JAVA - Expression parsing & evaluating library

后端 未结 4 2119
再見小時候
再見小時候 2021-02-09 01:04

I\'m looking for a JAVA library to parse & evaluate expression. I searched and tried some libraries like Apache\'s JEXL and Jeval, but they are not exactly what I need.

相关标签:
4条回答
  • 2021-02-09 01:34

    Here would be a couple of workaround solutions that you could choose from, if you don't find an actual Java expression evaluation library:

    • Evaluate your expressions using XPath.
      • Pros: XPath knows logical operators, and you can implement variables and custom functions using Xalan's extensions
      • Cons: XPath has fewer types than Java
    • Evaluate your expressions using JavaScript.
      • Pros: Javascript is very flexible and will still be suitable when your requirements tighten. You can implement variables and custom functions using Javascript as well
      • Cons: Javascript has fewer types than Java
    • Evaluate your expressions using JSP's expression language (e.g. with JUEL)
    0 讨论(0)
  • 2021-02-09 01:45

    You can try mXparser - it supports significant part of your requirements:

    1. It is based on double, so int is supported, additionally boolean is supported as true = 1 and false = 0. Unfortunately strings are not supported.

    Boolean example:

    import org.mariuszgromada.math.mxparser.*;
    ...
    ...
    Constant T = new Constant("T = 1");
    Constant F = new Constant("F = 0");
    Expression e = new Expression("T && (F || (F && T))", T, F);
    System.out.println(e.getExpressionString() + " = " + e.calculate());
    

    Result:

    T && (F || (F && T)) = 0.0
    
    1. mXparser has broad support for operators, functions, etc.. Check mXparser math collection. What is nice you can use help functionality inside the library.

    Example:

    import org.mariuszgromada.math.mxparser.*;
    ...
    ...
    mXparser.consolePrintHelp("operator");
    

    Result:

    Help content: 
    
        2. +                   <Operator>              addition
        3. -                   <Operator>              subtraction
        4. *                   <Operator>              multiplication
        5. /                   <Operator>              division
        6. ^                   <Operator>              exponentiation
        7. !                   <Operator>              factorial
        8. #                   <Operator>              modulo function
        9. &                   <Boolean Operator>      logical conjunction (AND)
       10. &&                  <Boolean Operator>      logical conjunction (AND)
       11. /\                  <Boolean Operator>      logical conjunction (AND)
       12. ~&                  <Boolean Operator>      NAND - Sheffer stroke
       13. ~&&                 <Boolean Operator>      NAND - Sheffer stroke
       14. ~/\                 <Boolean Operator>      NAND - Sheffer stroke
       15. |                   <Boolean Operator>      logical disjunction (OR)
       16. ||                  <Boolean Operator>      logical disjunction (OR)
       17. \/                  <Boolean Operator>      logical disjunction (OR)
       18. ~|                  <Boolean Operator>      logical NOR
       19. ~||                 <Boolean Operator>      logical NOR
       20. ~\/                 <Boolean Operator>      logical NOR
       21. (+)                 <Boolean Operator>      exclusive or (XOR)
       22. -->                 <Boolean Operator>      implication (IMP)
       23. <--                 <Boolean Operator>      converse implication (CIMP)
       24. -/>                 <Boolean Operator>      material nonimplication (NIMP)
       25. </-                 <Boolean Operator>      converse nonimplication (CNIMP)
       26. <->                 <Boolean Operator>      logical biconditional (EQV)
       27. ~                   <Boolean Operator>      negation
       28. ¬                   <Boolean Operator>      negation
      162. add                 <Variadic Function>     (2.4) Summation operator add(a1,a2,a3,...,an)
      168. sum                 <Calculus Operator>     summation operator (SIGMA) sum(i, from, to, f(i,...))
      169. prod                <Calculus Operator>     product operator (PI) prod(i, from, to, f(i,...))
      170. int                 <Calculus Operator>     definite integral operator ( int(f(x,...), x, a, b) )
      171. der                 <Calculus Operator>     derivative operator ( der(f(x,...), x) ) 
      172. der-                <Calculus Operator>     left derivative operator ( der-(f(x,...), x) ) 
      173. der+                <Calculus Operator>     right derivative operator ( der+(f(x,...), x) ) 
      174. dern                <Calculus Operator>     n-th derivative operator ( dern(f(x,...), x) ) 
      175. diff                <Calculus Operator>     forward difference operator
      176. difb                <Calculus Operator>     backward difference operator
      177. avg                 <Calculus Operator>     (2.4) Average operator avg(i, from, to, f(i,...))
      178. vari                <Calculus Operator>     (2.4) Bias-corrected sample variance operator vari(i, from, to, f(i,...))
      179. stdi                <Calculus Operator>     (2.4) Bias-corrected sample standard deviation operator stdi(i, from, to, f(i,...))
      180. mini                <Calculus Operator>     (2.4) Minimum value mini(i, from, to, f(i,...))
      181. maxi                <Calculus Operator>     (2.4) Maximum value maxi(i, from, to, f(i,...))
      182. solve               <Calculus Operator>     (4.0) f(x) = 0 equation solving, function root finding: solve( f(x,...), x, a, b )
      301. @~                  <Bitwise Operator>      (4.0) Bitwise unary complement
      302. @&                  <Bitwise Operator>      (4.0) Bitwise AND
      303. @^                  <Bitwise Operator>      (4.0) Bitwise exclusive OR
      304. @|                  <Bitwise Operator>      (4.0) Bitwise inclusive OR
      305. @<<                 <Bitwise Operator>      (4.0) Signed left shift
      306. @>>                 <Bitwise Operator>      (4.0) Signed right shift
    
    1. User defined variables and user defined constants are created without any special form.

    Example:

    import org.mariuszgromada.math.mxparser.*;
    ...
    ...
    Argument x = new Argument("x = 10");
    Constant y = new Constant("y = 2");
    Expression e = new Expression("x/y", x, y);
    System.out.println(e.getExpressionString() + " = " + e.calculate());
    

    Result:

    x/y = 5.0
    

    Additionally please check: a) Tutorial - User defined arguments, b) Tutorial - User defined constants.

    1. User defined functions are fully supported.

    Example 1 - body defined in run-time:

    import org.mariuszgromada.math.mxparser.*;
    ...
    ...
    Function f = new Function("f(x,y) = x*y");
    Expression e = new Expression("20-f(2,5)",f);
    System.out.println(e.getExpressionString() + " = " + e.calculate());
    

    Result 1

    20-f(2,5) = 10.0
    

    Example 2 - body extended via your own implementation:

    import org.mariuszgromada.math.mxparser.*;
    ...
    ...
    /*
     * Implementing FunctionExtension interface
     */
    public class Addition implements FunctionExtension {
       double x;
       double y;
       public Addition() {
          x = Double.NaN;
          y = Double.NaN;
       }
       public Addition(double x, double y) {
          this.x = x;
          this.y = y;
       }
       public int getParametersNumber() {
          return 2;
       }
       public void setParameterValue(int argumentIndex, double argumentValue) {
          if (argumentIndex == 0) x = argumentValue;
          if (argumentIndex == 1) y = argumentValue;
       }
       public double calculate(double... params) {
          return x+y;
       }
       public FunctionExtension clone() {
          return new Addition(x, y);
       }   
    }
    
    /*
    * Creating extended function
    */
    Function f = new Function("f", new Addition());
    mXparser.consolePrintln("f.calculate(1,2) = " + f.calculate(1,2) );
    /*
    * Using extended function in expression
    */
    Expression e = new Expression("f(2,3)", f);
    System.out.println(e.getExpressionString() + " = " + e.calculate() );
    

    Result 2:

    f.calculate(1,2) = 3.0
    f(2,3) = 5.0
    

    Additionally it is worth to follow the whole mXparser Tutorial.

    Found recently - in case you would like to try the syntax (and see the advanced use case) you can download the Scalar Calculator app that is powered by mXparser.

    Best regards

    0 讨论(0)
  • 2021-02-09 01:56

    Try Janino. It's a runtime in-memory compiler that can be used as an expression evaluator. Maybe it is the right thing for you.

    0 讨论(0)
  • 2021-02-09 01:57

    Like suggested, you can use JavaScript. But also you could take a look at Spring EL which has support for your requirements.

    0 讨论(0)
提交回复
热议问题