The fastest way to parse dates in Python when reading .csv file?

后端 未结 1 626
南旧
南旧 2021-02-08 20:33

I have a .csv file that has 2 separate columns for \'Date\' and \' Time\'. I read the file like this:

data1 = pd.read_csv(\'filename.cs         


        
相关标签:
1条回答
  • 2021-02-08 21:24

    Here, In your case 'Time' is in AM/PM format which take more time to parse.

    You can add format to increase speed of to_datetime() method.

    data0=pd.read_csv('filename.csv')
    
    # %Y - year including the century
    # %m - month (01 to 12)
    # %d - day of the month (01 to 31)
    data0['Date']=pd.to_datetime(data0['Date'], format="%Y/%m/%d")
    
    # %I - hour, using a -hour clock (01 to 12)
    # %M - minute
    # %p - either am or pm according to the given time value
    # data0['Time']=pd.to_datetime(data0['Time'], format="%I:%M %p") -> around 1 sec
    data0['Time']=pd.datetools.to_time(data0['Time'], format="%I:%M %p")
    

    For more methods info : Pandas Tools

    For more format options check - datetime format directives.

    For 500K rows it improved speed from around 60 seconds -> 0.01 seconds in my system.

    You can also use :

    # Combine date & time directly from string format
    pd.Timestamp(data0['Date'][0] + " " + data0['Time'][0])
    
    0 讨论(0)
提交回复
热议问题