I have a DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({\'foo.aa\': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
\'foo.fighters
Just perform a list comprehension to create your columns:
In [28]:
filter_col = [col for col in df if col.startswith('foo')]
filter_col
Out[28]:
['foo.aa', 'foo.bars', 'foo.fighters', 'foo.fox', 'foo.manchu']
In [29]:
df[filter_col]
Out[29]:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
Another method is to create a series from the columns and use the vectorised str method startswith:
In [33]:
df[df.columns[pd.Series(df.columns).str.startswith('foo')]]
Out[33]:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
In order to achieve what you want you need to add the following to filter the values that don't meet your ==1
criteria:
In [36]:
df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]]==1]
Out[36]:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 NaN 1 NaN NaN NaN NaN NaN
1 NaN NaN NaN 1 NaN NaN NaN
2 NaN NaN NaN NaN 1 NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN NaN 1 NaN NaN NaN NaN
EDIT
OK after seeing what you want the convoluted answer is this:
In [72]:
df.loc[df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]] == 1].dropna(how='all', axis=0).index]
Out[72]:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
Another option for the selection of the desired entries is to use map
:
df.loc[(df == 1).any(axis=1), df.columns.map(lambda x: x.startswith('foo'))]
which gives you all the columns for rows that contain a 1
:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
5 6.8 1 0 5 0
The row selection is done by
(df == 1).any(axis=1)
as in @ajcr's answer which gives you:
0 True
1 True
2 True
3 False
4 False
5 True
dtype: bool
meaning that row 3
and 4
do not contain a 1
and won't be selected.
The selection of the columns is done using Boolean indexing like this:
df.columns.map(lambda x: x.startswith('foo'))
In the example above this returns
array([False, True, True, True, True, True, False], dtype=bool)
So, if a column does not start with foo
, False
is returned and the column is therefore not selected.
If you just want to return all rows that contain a 1
- as your desired output suggests - you can simply do
df.loc[(df == 1).any(axis=1)]
which returns
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
Now that pandas' indexes support string operations, arguably the simplest and best way to select columns beginning with 'foo' is just:
df.loc[:, df.columns.str.startswith('foo')]
Alternatively, you can filter column (or row) labels with df.filter(). To specify a regular expression to match the names beginning with foo.
:
>>> df.filter(regex=r'^foo\.', axis=1)
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
To select only the required rows (containing a 1
) and the columns, you can use loc
, selecting the columns using filter
(or any other method) and the rows using any
:
>>> df.loc[(df == 1).any(axis=1), df.filter(regex=r'^foo\.', axis=1).columns]
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
5 6.8 1 0 5 0
My solution. It may be slower on performance:
a = pd.concat(df[df[c] == 1] for c in df.columns if c.startswith('foo'))
a.sort_index()
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
Based on @EdChum's answer, you can try the following solution:
df[df.columns[pd.Series(df.columns).str.contains("foo")]]
This will be really helpful in case not all the columns you want to select start with foo
. This method selects all the columns that contain the substring foo
and it could be placed in at any point of a column's name.
In essence, I replaced .startswith()
with .contains()
.
You can try the regex here to filter out the columns starting with "foo"
df.filter(regex='^foo*')
If you need to have the string foo in your column then
df.filter(regex='foo*')
would be appropriate.
For the next step, you can use
df[df.filter(regex='^foo*').values==1]
to filter out the rows where one of the values of 'foo*' column is 1.