Following in the spirit of this answer, I attempted the following to convert a DataFrame column of datetimes to a column of seconds since the epoch.
df[\'date\'
Update:
In 0.15.0 Timedeltas
became a full-fledged dtype.
So this becomes possible (as well as the methods below)
In [45]: s = Series(pd.timedelta_range('1 day',freq='1S',periods=5))
In [46]: s.dt.components
Out[46]:
days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 2 0 0 0
3 1 0 0 3 0 0 0
4 1 0 0 4 0 0 0
In [47]: s.astype('timedelta64[s]')
Out[47]:
0 86400
1 86401
2 86402
3 86403
4 86404
dtype: float64
Original Answer:
I see that you are on master (and 0.13 is coming out very shortly), so assuming you have numpy >= 1.7. Do this. See here for the docs (this is frequency conversion)
In [5]: df = DataFrame(dict(date = date_range('20130101',periods=10)))
In [6]: df
Out[6]:
date
0 2013-01-01 00:00:00
1 2013-01-02 00:00:00
2 2013-01-03 00:00:00
3 2013-01-04 00:00:00
4 2013-01-05 00:00:00
5 2013-01-06 00:00:00
6 2013-01-07 00:00:00
7 2013-01-08 00:00:00
8 2013-01-09 00:00:00
9 2013-01-10 00:00:00
In [7]: df['date']+timedelta(hours=2)-datetime.datetime(1970,1,1)
Out[7]:
0 15706 days, 02:00:00
1 15707 days, 02:00:00
2 15708 days, 02:00:00
3 15709 days, 02:00:00
4 15710 days, 02:00:00
5 15711 days, 02:00:00
6 15712 days, 02:00:00
7 15713 days, 02:00:00
8 15714 days, 02:00:00
9 15715 days, 02:00:00
Name: date, dtype: timedelta64[ns]
In [9]: (df['date']+timedelta(hours=2)-datetime.datetime(1970,1,1)) / np.timedelta64(1,'s')
Out[9]:
0 1357005600
1 1357092000
2 1357178400
3 1357264800
4 1357351200
5 1357437600
6 1357524000
7 1357610400
8 1357696800
9 1357783200
Name: date, dtype: float64
The contained values are np.timedelta64[ns]
objects, they don't have the same methods as timedelta
objects, so no total_seconds()
.
In [10]: s = (df['date']+timedelta(hours=2)-datetime.datetime(1970,1,1))
In [11]: s[0]
Out[11]: numpy.timedelta64(1357005600000000000,'ns')
You can astype them to int, and you get back a ns
unit.
In [12]: s[0].astype(int)
Out[12]: 1357005600000000000
You can do this as well (but only on an individual unit element).
In [18]: s[0].astype('timedelta64[s]')
Out[18]: numpy.timedelta64(1357005600,'s')