How do I return a value from a thread?
Simply use the delegate approach.
int val;
Thread thread = new Thread(() => { val = Multiply(1, 2); });
thread.Start();
Now make Multiply function that will work on another thread:
int Multiply(int x, int y)
{
return x * y;
}
I came across this thread when also trying to obtain the return value of a method that gets executed within a Thread. I thought I would post my solution that works.
This solution uses an class to store both the method to be executed (indirectly) and stores the returning value. The class can be used for any function and any return type. You just instantiate the object using the return value type and then pass the function to call via a lambda (or delegate).
C# 3.0 Implementation
public class ThreadedMethod<T>
{
private T mResult;
public T Result
{
get { return mResult; }
private set { mResult = value; }
}
public ThreadedMethod()
{
}
//If supporting .net 3.5
public void ExecuteMethod(Func<T> func)
{
Result = func.Invoke();
}
//If supporting only 2.0 use this and
//comment out the other overload
public void ExecuteMethod(Delegate d)
{
Result = (T)d.DynamicInvoke();
}
}
To use this code you can use a Lambda (or a delegate). Here is the example using lambdas:
ThreadedMethod<bool> threadedMethod = new ThreadedMethod<bool>();
Thread workerThread = new Thread((unused) =>
threadedMethod.ExecuteMethod(() =>
SomeMethod()));
workerThread.Start();
workerThread.Join();
if (threadedMethod.Result == false)
{
//do something about it...
}
VB.NET 2008 Implementation
Anyone using VB.NET 2008 can't use lambdas with non-value returning methods. This affects the ThreadedMethod
class, so we'll make ExecuteMethod
return the value of the function. This doesn't hurt anything.
Public Class ThreadedMethod(Of T)
Private mResult As T
Public Property Result() As T
Get
Return mResult
End Get
Private Set(ByVal value As T)
mResult = value
End Set
End Property
Sub New()
End Sub
'If supporting .net 3.5'
Function ExecuteMethod(ByVal func As Func(Of T)) As T
Result = func.Invoke()
Return Result
End Function
'If supporting only 2.0 use this and'
'comment out the other overload'
Function ExecuteMethod(ByVal d As [Delegate]) As T
Result = DirectCast(d.DynamicInvoke(), T)
Return Result
End Function
End Class
A thread isn't a method - you don't normally "return" a value.
However, if you're trying to fetch a value back from the results of some processing, you have many options, the two main ones being:
It really depends on how you're creating the thread, and how you want to use it, as well as the language/framework/tools you're using.
Threads do not really have return values. However, if you create a delegate, you can invoke it asynchronously via the BeginInvoke
method. This will execute the method on a thread pool thread. You can get any return value from such as call via EndInvoke
.
Example:
static int GetAnswer() {
return 42;
}
...
Func<int> method = GetAnswer;
var res = method.BeginInvoke(null, null); // provide args as needed
var answer = method.EndInvoke(res);
GetAnswer
will execute on a thread pool thread and when completed you can retrieve the answer via EndInvoke
as shown.
The BackgroundWorker is nice when developing for Windows Forms.
Say you wanted to pass a simple class back and forth:
class Anything {
// Number and Text are for instructional purposes only
public int Number { get; set; }
public string Text { get; set; }
// Data can be any object - even another class
public object Data { get; set; }
}
I wrote up a short class that does the following:
From inside the thread routine:
Adding a delegate can be useful for posting your data directly back to your main thread, but you may need to use Invoke if some of the data items are not thread safe.
class AnyTask {
private object m_lock;
public AnyTask() {
m_lock = new object();
}
// Something to use the delegate
public event MainDelegate OnUpdate;
public void Test_Function(int count) {
var list = new List<Thread>(count);
for (var i = 0; i < count; i++) {
var thread = new Thread(new ParameterizedThreadStart(Thread_Task));
var item = new Anything() {
Number = i,
Text = String.Format("Test_Function #{0}", i)
};
thread.Start(item);
list.Add(thread);
}
foreach (var thread in list) {
thread.Join();
}
}
private void MainUpdate(Anything item, bool original) {
if (OnUpdate != null) {
OnUpdate(item, original);
}
}
private void Thread_Task(object parameter) {
lock (m_lock) {
var item = (Anything)parameter;
MainUpdate(item, true);
item.Text = String.Format("{0}; Thread_Task #{1}", item.Text, item.Number);
item.Number = 0;
MainUpdate(item, false);
}
}
}
To test this, create a little Console Application, and put this in the Program.cs file:
// A delegate makes life simpler
delegate void MainDelegate(Anything sender, bool original);
class Program {
private const int COUNT = 15;
private static List<Anything> m_list;
static void Main(string[] args) {
m_list = new List<Anything>(COUNT);
var obj = new AnyTask();
obj.OnUpdate += new MainDelegate(ThreadMessages);
obj.Test_Function(COUNT);
Console.WriteLine();
foreach (var item in m_list) {
Console.WriteLine("[Complete]:" + item.Text);
}
Console.WriteLine("Press any key to exit.");
Console.ReadKey();
}
private static void ThreadMessages(Anything item, bool original) {
if (original) {
Console.WriteLine("[main method]:" + item.Text);
} else {
m_list.Add(item);
}
}
}
Here is a screenshot of what I got with this:
I hope others can understand what I've tried to explain.
I enjoy working on threads and using delegates. They make C# a lot of fun.
I wanted to see what was involved in writing the code above as a VB Console Application. The conversion involved a few things I didn't expect, so I will update this thread here for those wanting to know how to thread in VB.
Imports System.Threading
Delegate Sub MainDelegate(sender As Anything, original As Boolean)
Class Main
Private Const COUNT As Integer = 15
Private Shared m_list As List(Of Anything)
Public Shared Sub Main(args As String())
m_list = New List(Of Anything)(COUNT)
Dim obj As New AnyTask()
AddHandler obj.OnUpdate, New MainDelegate(AddressOf ThreadMessages)
obj.Test_Function(COUNT)
Console.WriteLine()
For Each item As Anything In m_list
Console.WriteLine("[Complete]:" + item.Text)
Next
Console.WriteLine("Press any key to exit.")
Console.ReadKey()
End Sub
Private Shared Sub ThreadMessages(item As Anything, original As Boolean)
If original Then
Console.WriteLine("[main method]:" + item.Text)
Else
m_list.Add(item)
End If
End Sub
End Class
Class AnyTask
Private m_lock As Object
Public Sub New()
m_lock = New Object()
End Sub
' Something to use the delegate
Public Event OnUpdate As MainDelegate
Public Sub Test_Function(count As Integer)
Dim list As New List(Of Thread)(count)
For i As Int32 = 0 To count - 1
Dim thread As New Thread(New ParameterizedThreadStart(AddressOf Thread_Task))
Dim item As New Anything()
item.Number = i
item.Text = String.Format("Test_Function #{0}", i)
thread.Start(item)
list.Add(thread)
Next
For Each thread As Thread In list
thread.Join()
Next
End Sub
Private Sub MainUpdate(item As Anything, original As Boolean)
RaiseEvent OnUpdate(item, original)
End Sub
Private Sub Thread_Task(parameter As Object)
SyncLock m_lock
Dim item As Anything = DirectCast(parameter, Anything)
MainUpdate(item, True)
item.Text = [String].Format("{0}; Thread_Task #{1}", item.Text, item.Number)
item.Number = 0
MainUpdate(item, False)
End SyncLock
End Sub
End Class
Class Anything
' Number and Text are for instructional purposes only
Public Property Number() As Integer
Get
Return m_Number
End Get
Set(value As Integer)
m_Number = value
End Set
End Property
Private m_Number As Integer
Public Property Text() As String
Get
Return m_Text
End Get
Set(value As String)
m_Text = value
End Set
End Property
Private m_Text As String
' Data can be anything or another class
Public Property Data() As Object
Get
Return m_Data
End Get
Set(value As Object)
m_Data = value
End Set
End Property
Private m_Data As Object
End Class
One of the easiest ways to get a return value from a thread is to use closures. Create a variable that will hold the return value from the thread and then capture it in a lambda expression. Assign the "return" value to this variable from the worker thread and then once that thread ends you can use it from the parent thread.
void Main()
{
object value = null; // Used to store the return value
var thread = new Thread(
() =>
{
value = "Hello World"; // Publish the return value
});
thread.Start();
thread.Join();
Console.WriteLine(value); // Use the return value here
}