Remove background text and noise from an image using image processing with OpenCV

前端 未结 3 1806
北海茫月
北海茫月 2021-02-08 18:08

I have these images

For which I want to remove the text in the background. Only the captcha characters should remain(i.e K6PwKA, YabVzu).

相关标签:
3条回答
  • 2021-02-08 18:34

    Didn't try , but this might work. step 1: use ps to find out what color the captcha characters are. For excample, "YabVzu" is (128,128,128),

    Step 2: Use pillow's method getdata()/getcolor(), it will return a sequence which contain the colour of every pixel.

    then ,we project every item in the sequence to the original captcha image.

    hence we know the positon of every pixel in the image.

    Step 3: find all pixels whose colour with the most approximate values to (128,128,128). You may set a threshold to control the accuracy. this step return another sequence. Lets annotate it as Seq a

    Step 4: generate a picture with the very same height and width as the original one. plot every pixel in [Seq a] in the very excat position in the picture. Here,we will get a cleaned training items

    Step 5: Use a Keras project to break the code. And the precission should be over 72%.

    0 讨论(0)
  • 2021-02-08 18:35

    Here are two potential approaches and a method to correct distorted text:

    Method #1: Morphological operations + contour filtering

    1. Obtain binary image. Load image, grayscale, then Otsu's threshold.

    2. Remove text contours. Create a rectangular kernel with cv2.getStructuringElement and then perform morphological operations to remove noise.

    3. Filter and remove small noise. Find contours and filter using contour area to remove small particles. We effectively remove the noise by filling in the contour with cv2.drawContours

    4. Perform OCR. We invert the image then apply a slight Gaussian blur. We then OCR using Pytesseract with the --psm 6 configuration option to treat the image as a single block of text. Look at Tesseract improve quality for other methods to improve detection and Pytesseract configuration options for additional settings.


    Input image -> Binary -> Morph opening

    Contour area filtering -> Invert -> Apply blur to get result

    Result from OCR

    YabVzu
    

    Code

    import cv2
    import pytesseract
    import numpy as np
    
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
    
    # Load image, grayscale, Otsu's threshold
    image = cv2.imread('2.png')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
    
    # Morph open to remove noise
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
    
    # Find contours and remove small noise
    cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    for c in cnts:
        area = cv2.contourArea(c)
        if area < 50:
            cv2.drawContours(opening, [c], -1, 0, -1)
    
    # Invert and apply slight Gaussian blur
    result = 255 - opening
    result = cv2.GaussianBlur(result, (3,3), 0)
    
    # Perform OCR
    data = pytesseract.image_to_string(result, lang='eng', config='--psm 6')
    print(data)
    
    cv2.imshow('thresh', thresh)
    cv2.imshow('opening', opening)
    cv2.imshow('result', result)
    cv2.waitKey()     
    

    Method #2: Color segmentation

    With the observation that the desired text to extract has a distinguishable contrast from the noise in the image, we can use color thresholding to isolate the text. The idea is to convert to HSV format then color threshold to obtain a mask using a lower/upper color range. From were we use the same process to OCR with Pytesseract.


    Input image -> Mask -> Result

    Code

    import cv2
    import pytesseract
    import numpy as np
    
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
    
    # Load image, convert to HSV, color threshold to get mask
    image = cv2.imread('2.png')
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    lower = np.array([0, 0, 0])
    upper = np.array([100, 175, 110])
    mask = cv2.inRange(hsv, lower, upper)
    
    # Invert image and OCR
    invert = 255 - mask
    data = pytesseract.image_to_string(invert, lang='eng', config='--psm 6')
    print(data)
    
    cv2.imshow('mask', mask)
    cv2.imshow('invert', invert)
    cv2.waitKey()
    

    Correcting distorted text

    OCR works best when the image is horizontal. To ensure that the text is in an ideal format for OCR, we can perform a perspective transform. After removing all the noise to isolate the text, we can perform a morph close to combine individual text contours into a single contour. From here we can find the rotated bounding box using cv2.minAreaRect and then perform a four point perspective transform using imutils.perspective.four_point_transform. Continuing from the cleaned mask, here's the results:

    Mask -> Morph close -> Detected rotated bounding box -> Result

    Output with the other image

    Updated code to include perspective transform

    import cv2
    import pytesseract
    import numpy as np
    from imutils.perspective import four_point_transform
    
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
    
    # Load image, convert to HSV, color threshold to get mask
    image = cv2.imread('1.png')
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    lower = np.array([0, 0, 0])
    upper = np.array([100, 175, 110])
    mask = cv2.inRange(hsv, lower, upper)
    
    # Morph close to connect individual text into a single contour
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
    close = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=3)
    
    # Find rotated bounding box then perspective transform
    cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    rect = cv2.minAreaRect(cnts[0])
    box = cv2.boxPoints(rect)
    box = np.int0(box)
    cv2.drawContours(image,[box],0,(36,255,12),2)
    warped = four_point_transform(255 - mask, box.reshape(4, 2))
    
    # OCR
    data = pytesseract.image_to_string(warped, lang='eng', config='--psm 6')
    print(data)
    
    cv2.imshow('mask', mask)
    cv2.imshow('close', close)
    cv2.imshow('warped', warped)
    cv2.imshow('image', image)
    cv2.waitKey()
    

    Note: The color threshold range was determined using this HSV threshold script

    import cv2
    import numpy as np
    
    def nothing(x):
        pass
    
    # Load image
    image = cv2.imread('2.png')
    
    # Create a window
    cv2.namedWindow('image')
    
    # Create trackbars for color change
    # Hue is from 0-179 for Opencv
    cv2.createTrackbar('HMin', 'image', 0, 179, nothing)
    cv2.createTrackbar('SMin', 'image', 0, 255, nothing)
    cv2.createTrackbar('VMin', 'image', 0, 255, nothing)
    cv2.createTrackbar('HMax', 'image', 0, 179, nothing)
    cv2.createTrackbar('SMax', 'image', 0, 255, nothing)
    cv2.createTrackbar('VMax', 'image', 0, 255, nothing)
    
    # Set default value for Max HSV trackbars
    cv2.setTrackbarPos('HMax', 'image', 179)
    cv2.setTrackbarPos('SMax', 'image', 255)
    cv2.setTrackbarPos('VMax', 'image', 255)
    
    # Initialize HSV min/max values
    hMin = sMin = vMin = hMax = sMax = vMax = 0
    phMin = psMin = pvMin = phMax = psMax = pvMax = 0
    
    while(1):
        # Get current positions of all trackbars
        hMin = cv2.getTrackbarPos('HMin', 'image')
        sMin = cv2.getTrackbarPos('SMin', 'image')
        vMin = cv2.getTrackbarPos('VMin', 'image')
        hMax = cv2.getTrackbarPos('HMax', 'image')
        sMax = cv2.getTrackbarPos('SMax', 'image')
        vMax = cv2.getTrackbarPos('VMax', 'image')
    
        # Set minimum and maximum HSV values to display
        lower = np.array([hMin, sMin, vMin])
        upper = np.array([hMax, sMax, vMax])
    
        # Convert to HSV format and color threshold
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(hsv, lower, upper)
        result = cv2.bitwise_and(image, image, mask=mask)
    
        # Print if there is a change in HSV value
        if((phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
            print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
            phMin = hMin
            psMin = sMin
            pvMin = vMin
            phMax = hMax
            psMax = sMax
            pvMax = vMax
    
        # Display result image
        cv2.imshow('image', result)
        if cv2.waitKey(10) & 0xFF == ord('q'):
            break
    
    cv2.destroyAllWindows()
    
    0 讨论(0)
  • 2021-02-08 18:39

    Your code produces better results than this. Here, I set a threshold for upperb and lowerb values based on histogram CDF values and a threshold. Press ESC button to get next image.

    This code is unnecessarily complex and needs to be optimized in various ways. Code can be reordered to skip some steps. I kept it as some parts may help others. Some existing noise can be removed by keeping contour with area above certain threshold. Any suggestions on other noise reduction method is welcome.

    Similar easier code for getting 4 corner points for perspective transform can be found here,

    Accurate corners detection?

    Code Description:

    • Original Image
    • Median Filter (Noise Removal and ROI Identification)
    • OTSU Thresholding
    • Invert Image
    • Use Inverted Black and White Image as Mask to keep mostly ROI part of original image
    • Dilation for largest Contour finding
    • Mark the ROI by drawing rectangle and corner points in original image

    • Straighten the ROI and extract it

    • Median Filter
    • OTSU Thresholding
    • Invert Image for mask
    • Mask the straight image to remove most noise further to text
    • In Range is used with lowerb and upperb values from histogram cdf as mentioned above to further reduce noise
    • Maybe eroding the image at this step will produce somewhat acceptable result. Instead here that image is dilated again and used as a mask to get less noisy ROI from perspective transformed image.

    Code:

    ## Press ESC button to get next image
    
    import cv2
    import cv2 as cv
    import numpy as np
    
    
    frame = cv2.imread('extra/c1.png')
    #frame = cv2.imread('extra/c2.png')
    
    
    ## keeping a copy of original
    print(frame.shape)
    original_frame = frame.copy()
    original_frame2 = frame.copy()
    
    
    ## Show the original image
    winName = 'Original'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    ## Apply median blur
    frame = cv2.medianBlur(frame,9)
    
    
    ## Show the original image
    winName = 'Median Blur'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    #kernel = np.ones((5,5),np.uint8)
    #frame = cv2.dilate(frame,kernel,iterations = 1)
    
    
    
    # Otsu's thresholding
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ret2,thresh_n = cv.threshold(frame,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
    frame = thresh_n
    
    
    ## Show the original image
    winName = 'Otsu Thresholding'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    
    ## invert color
    frame = cv2.bitwise_not(frame)
    
    ## Show the original image
    winName = 'Invert Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ## Dilate image
    kernel = np.ones((5,5),np.uint8)
    frame = cv2.dilate(frame,kernel,iterations = 1)
    
    
    ##
    ## Show the original image
    winName = 'SUB'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    img_gray = cv2.cvtColor(original_frame, cv2.COLOR_BGR2GRAY)
    cv.imshow(winName, img_gray & frame)
    cv.waitKey(0)
    
    
    ## Show the original image
    winName = 'Dilate Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ## Get largest contour from contours
    contours, hierarchy = cv2.findContours(frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
    
    ## Get minimum area rectangle and corner points
    rect = cv2.minAreaRect(max(contours, key = cv2.contourArea))
    print(rect)
    box = cv2.boxPoints(rect)
    print(box)
    
    
    ## Sorted points by x and y
    ## Not used in this code
    print(sorted(box , key=lambda k: [k[0], k[1]]))
    
    
    
    ## draw anchor points on corner
    frame = original_frame.copy()
    z = 6
    for b in box:
        cv2.circle(frame, tuple(b), z, 255, -1)
    
    
    ## show original image with corners
    box2 = np.int0(box)
    cv2.drawContours(frame,[box2],0,(0,0,255), 2)
    cv2.imshow('Detected Corners',frame)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    
    
    ## https://stackoverflow.com/questions/11627362/how-to-straighten-a-rotated-rectangle-area-of-an-image-using-opencv-in-python
    def subimage(image, center, theta, width, height):
       shape = ( image.shape[1], image.shape[0] ) # cv2.warpAffine expects shape in (length, height)
    
       matrix = cv2.getRotationMatrix2D( center=center, angle=theta, scale=1 )
       image = cv2.warpAffine( src=image, M=matrix, dsize=shape )
    
       x = int(center[0] - width / 2)
       y = int(center[1] - height / 2)
    
       image = image[ y:y+height, x:x+width ]
    
       return image
    
    
    
    ## Show the original image
    winName = 'Dilate Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    
    
    ## use the calculated rectangle attributes to rotate and extract it
    frame = subimage(original_frame, center=rect[0], theta=int(rect[2]), width=int(rect[1][0]), height=int(rect[1][1]))
    original_frame = frame.copy()
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    perspective_transformed_image = frame.copy()
    
    
    
    ## Apply median blur
    frame = cv2.medianBlur(frame,11)
    
    
    ## Show the original image
    winName = 'Median Blur'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    #kernel = np.ones((5,5),np.uint8)
    #frame = cv2.dilate(frame,kernel,iterations = 1)
    
    
    
    # Otsu's thresholding
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ret2,thresh_n = cv.threshold(frame,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
    frame = thresh_n
    
    
    ## Show the original image
    winName = 'Otsu Thresholding'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    ## invert color
    frame = cv2.bitwise_not(frame)
    
    ## Show the original image
    winName = 'Invert Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ## Dilate image
    kernel = np.ones((5,5),np.uint8)
    frame = cv2.dilate(frame,kernel,iterations = 1)
    
    ##
    ## Show the original image
    winName = 'SUB'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    img_gray = cv2.cvtColor(original_frame, cv2.COLOR_BGR2GRAY)
    frame = img_gray & frame
    frame[np.where(frame==0)] = 255
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    
    
    hist,bins = np.histogram(frame.flatten(),256,[0,256])
    
    cdf = hist.cumsum()
    cdf_normalized = cdf * hist.max()/ cdf.max()
    print(cdf)
    print(cdf_normalized)
    hist_image = frame.copy()
    
    
    
    
    ## two decresing range algorithm
    low_index = -1
    for i in range(0, 256):
       if cdf[i] > 0:
          low_index = i
          break
    print(low_index)
    
    tol = 0
    tol_limit = 20
    broken_index = -1
    past_val = cdf[low_index] - cdf[low_index + 1]
    for i in range(low_index + 1, 255):
       cur_val = cdf[i] - cdf[i+1]
       if tol > tol_limit:
          broken_index = i
          break
       if cur_val < past_val:
          tol += 1
       past_val = cur_val
    
    print(broken_index)
    
    
    
    
    ##
    lower = min(frame.flatten())
    upper = max(frame.flatten())
    print(min(frame.flatten()))
    print(max(frame.flatten()))
    
    #img_rgb_inrange = cv2.inRange(frame_HSV, np.array([lower,lower,lower]), np.array([upper,upper,upper]))
    img_rgb_inrange = cv2.inRange(frame, (low_index), (broken_index))
    neg_rgb_image = ~img_rgb_inrange
    ## Show the original image
    winName = 'Final'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, neg_rgb_image)
    cv.waitKey(0)
    
    
    kernel = np.ones((3,3),np.uint8)
    frame = cv2.erode(neg_rgb_image,kernel,iterations = 1)
    winName = 'Final Dilate'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ##
    winName = 'Final Subtracted'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    img2 = np.zeros_like(perspective_transformed_image)
    img2[:,:,0] = frame
    img2[:,:,1] = frame
    img2[:,:,2] = frame
    frame = img2
    cv.imshow(winName, perspective_transformed_image | frame)
    cv.waitKey(0)
    
    
    ##
    import matplotlib.pyplot as plt
    plt.plot(cdf_normalized, color = 'b')
    plt.hist(hist_image.flatten(),256,[0,256], color = 'r')
    plt.xlim([0,256])
    plt.legend(('cdf','histogram'), loc = 'upper left')
    plt.show()
    

    1. Median Filter:

    2. OTSU Threshold:

    3. Invert:

    4. Inverted Image Dilation:

    5. Extract by Masking:

    6. ROI points for transform:

    7. Perspective Corrected Image:

    8. Median Blur:

    9. OTSU Threshold:

    10. Inverted Image:

    11. ROI Extraction:

    12. Clamping:

    13. Dilation:

    14. Final ROI:

    15. Histogram plot of step 11 image:

    0 讨论(0)
提交回复
热议问题