I\'m looking into changing from Solr to ES. One of the things I can\'t find info about is whether ES lets me define exclusion filters when faceting.
For example consid
Yes you can.
While you can use filters within the query DSL, the search API also accepts a top-level filter
parameter, which is used for filtering the search results AFTER the facets have been calculated.
For example:
1) First, create your index, and because you want product_type
to be treated as an enum, set it to be not_analyzed
:
curl -XPUT 'http://127.0.0.1:9200/my_index/?pretty=1' -d '
{
"mappings" : {
"product" : {
"properties" : {
"product_type" : {
"index" : "not_analyzed",
"type" : "string"
},
"product_name" : {
"type" : "string"
}
}
}
}
}
'
2) Index some docs (note, doc 3 has a different product_name
):
curl -XPUT 'http://127.0.0.1:9200/my_index/product/1?pretty=1' -d '
{
"product_type" : "A",
"product_name" : "foo bar"
}
'
curl -XPUT 'http://127.0.0.1:9200/my_index/product/2?pretty=1' -d '
{
"product_type" : "B",
"product_name" : "foo bar"
}
'
curl -XPUT 'http://127.0.0.1:9200/my_index/product/3?pretty=1' -d '
{
"product_type" : "C",
"product_name" : "bar"
}
'
3) Perform a search for products whose name contains foo
(which excludes doc 3 and thus product_type
C
), calculate facets for product_type
for all docs which have foo
in the product_name
, then filter the search results by product_type
== A
:
curl -XGET 'http://127.0.0.1:9200/my_index/product/_search?pretty=1' -d '
{
"query" : {
"text" : {
"product_name" : "foo"
}
},
"filter" : {
"term" : {
"product_type" : "A"
}
},
"facets" : {
"product_type" : {
"terms" : {
"field" : "product_type"
}
}
}
}
'
# {
# "hits" : {
# "hits" : [
# {
# "_source" : {
# "product_type" : "A",
# "product_name" : "foo bar"
# },
# "_score" : 0.19178301,
# "_index" : "my_index",
# "_id" : "1",
# "_type" : "product"
# }
# ],
# "max_score" : 0.19178301,
# "total" : 1
# },
# "timed_out" : false,
# "_shards" : {
# "failed" : 0,
# "successful" : 5,
# "total" : 5
# },
# "facets" : {
# "product_type" : {
# "other" : 0,
# "terms" : [
# {
# "count" : 1,
# "term" : "B"
# },
# {
# "count" : 1,
# "term" : "A"
# }
# ],
# "missing" : 0,
# "_type" : "terms",
# "total" : 2
# }
# },
# "took" : 3
# }
4) Perform a search for foo
in the product_name
, but calculate facets for all products in the index, by specifying the global
parameter:
# [Wed Jan 18 17:15:09 2012] Protocol: http, Server: 192.168.5.10:9200
curl -XGET 'http://127.0.0.1:9200/my_index/product/_search?pretty=1' -d '
{
"query" : {
"text" : {
"product_name" : "foo"
}
},
"filter" : {
"term" : {
"product_type" : "A"
}
},
"facets" : {
"product_type" : {
"global" : 1,
"terms" : {
"field" : "product_type"
}
}
}
}
'
# [Wed Jan 18 17:15:09 2012] Response:
# {
# "hits" : {
# "hits" : [
# {
# "_source" : {
# "product_type" : "A",
# "product_name" : "foo bar"
# },
# "_score" : 0.19178301,
# "_index" : "my_index",
# "_id" : "1",
# "_type" : "product"
# }
# ],
# "max_score" : 0.19178301,
# "total" : 1
# },
# "timed_out" : false,
# "_shards" : {
# "failed" : 0,
# "successful" : 5,
# "total" : 5
# },
# "facets" : {
# "product_type" : {
# "other" : 0,
# "terms" : [
# {
# "count" : 1,
# "term" : "C"
# },
# {
# "count" : 1,
# "term" : "B"
# },
# {
# "count" : 1,
# "term" : "A"
# }
# ],
# "missing" : 0,
# "_type" : "terms",
# "total" : 3
# }
# },
# "took" : 4
# }
UPDATE TO ANSWER THE EXPANDED QUESTION FROM THE OP:
You can also apply filters directly to each facet - these are called facet_filters
.
Similar example to before:
1) Create the index:
curl -XPUT 'http://127.0.0.1:9200/my_index/?pretty=1' -d '
{
"mappings" : {
"product" : {
"properties" : {
"color" : {
"index" : "not_analyzed",
"type" : "string"
},
"name" : {
"type" : "string"
},
"type" : {
"index" : "not_analyzed",
"type" : "string"
}
}
}
}
}
'
2) Index some data:
curl -XPUT 'http://127.0.0.1:9200/my_index/product/1?pretty=1' -d '
{
"color" : "red",
"name" : "foo bar",
"type" : "A"
}
'
curl -XPUT 'http://127.0.0.1:9200/my_index/product/2?pretty=1' -d '
{
"color" : [
"red",
"blue"
],
"name" : "foo bar",
"type" : "B"
}
'
curl -XPUT 'http://127.0.0.1:9200/my_index/product/3?pretty=1' -d '
{
"color" : [
"green",
"blue"
],
"name" : "bar",
"type" : "C"
}
'
3) Search, filtering on products that have both type
==A
and color
== blue
, then run facets on each attribute excluding, the "other" filter:
curl -XGET 'http://127.0.0.1:9200/my_index/product/_search?pretty=1' -d '
{
"filter" : {
"and" : [
{
"term" : {
"color" : "blue"
}
},
{
"term" : {
"type" : "A"
}
}
]
},
"facets" : {
"color" : {
"terms" : {
"field" : "color"
},
"facet_filter" : {
"term" : {
"type" : "A"
}
}
},
"type" : {
"terms" : {
"field" : "type"
},
"facet_filter" : {
"term" : {
"color" : "blue"
}
}
}
}
}
'
# [Wed Jan 18 19:58:25 2012] Response:
# {
# "hits" : {
# "hits" : [],
# "max_score" : null,
# "total" : 0
# },
# "timed_out" : false,
# "_shards" : {
# "failed" : 0,
# "successful" : 5,
# "total" : 5
# },
# "facets" : {
# "color" : {
# "other" : 0,
# "terms" : [
# {
# "count" : 1,
# "term" : "red"
# }
# ],
# "missing" : 0,
# "_type" : "terms",
# "total" : 1
# },
# "type" : {
# "other" : 0,
# "terms" : [
# {
# "count" : 1,
# "term" : "C"
# },
# {
# "count" : 1,
# "term" : "B"
# }
# ],
# "missing" : 0,
# "_type" : "terms",
# "total" : 2
# }
# },
# "took" : 3
# }