Assume you have an array of values that will need to be summed together
d = [1,1,1,1,1]
and a second array specifying which elements need to be
def zeros(ilen):
r = []
for i in range(0,ilen):
r.append(0)
i_list = [0,0,1,2,2]
d = [1,1,1,1,1]
result = zeros(max(i_list)+1)
for index in i_list:
result[index]+=d[index]
print result
In the general case when you want to sum submatrices by labels you can use the following code
import numpy as np
from scipy.sparse import coo_matrix
def labeled_sum1(x, labels):
P = coo_matrix((np.ones(x.shape[0]), (labels, np.arange(len(labels)))))
res = P.dot(x.reshape((x.shape[0], np.prod(x.shape[1:]))))
return res.reshape((res.shape[0],) + x.shape[1:])
def labeled_sum2(x, labels):
res = np.empty((np.max(labels) + 1,) + x.shape[1:], x.dtype)
for i in np.ndindex(x.shape[1:]):
res[(...,)+i] = np.bincount(labels, x[(...,)+i])
return res
The first method use the sparse matrix multiplication. The second one is the generalization of user333700's answer. Both methods have comparable speed:
x = np.random.randn(100000, 10, 10)
labels = np.random.randint(0, 1000, 100000)
%time res1 = labeled_sum1(x, labels)
%time res2 = labeled_sum2(x, labels)
np.all(res1 == res2)
Output:
Wall time: 73.2 ms
Wall time: 68.9 ms
True
This solution should be more efficient for large arrays (it iterates over the possible index values instead of the individual entries of i
):
import numpy as np
i = np.array([0,0,1,2,2])
d = np.array([0,1,2,3,4])
i_max = i.max()
c = np.empty(i_max+1)
for j in range(i_max+1):
c[j] = d[i==j].sum()
print c
[1. 2. 7.]
If I understand the question correctly, there is a fast function for this (as long as the data array is 1d)
>>> i = np.array([0,0,1,2,2])
>>> d = np.array([0,1,2,3,4])
>>> np.bincount(i, weights=d)
array([ 1., 2., 7.])
np.bincount returns an array for all integers range(max(i)), even if some counts are zero
Juh_'s comment is the most efficient solution. Here's working code:
import numpy as np
import scipy.ndimage as ni
i = np.array([0,0,1,2,2])
d = np.array([0,1,2,3,4])
n_indices = i.max() + 1
print ni.sum(d, i, np.arange(n_indices))