mutate rowSums exclude one column

前端 未结 3 458
梦毁少年i
梦毁少年i 2021-02-08 10:55

I have a data frame like this

> df
Source: local data frame [4 x 4]

      a x y z
1 name1 1 1 1
2 name2 1 1 1
3 name3 1 1 1
4 name4 1 1 1

W

相关标签:
3条回答
  • 2021-02-08 11:28

    This should work:

    #dummy data    
    df <- read.table(text="a x y z
    
    1 name1 1 1 1
    2 name2 1 1 1
    3 name3 1 1 1
    4 name4 1 1 1",header=TRUE)
    
    library(dplyr)
    
    df %>% select(-a) %>% mutate(total=rowSums(.)) 
    

    First exclude text column - a, then do the rowSums over remaining numeric columns.

    0 讨论(0)
  • 2021-02-08 11:30

    If you want to keep non-numeric columns in the result, you can do this:

    dat %>% mutate(total=rowSums(.[, sapply(., is.numeric)]))
    

    UPDATE: Now that dplyr has scoped versions of its standard verbs, here's another option:

    dat %>% mutate(total=rowSums(select_if(., is.numeric)))
    

    UPDATE 2: With dplyr 1.0, the approaches above will still work, but you can also do row sums by combining rowwise and c_across:

    iris %>% 
      rowwise %>% 
      mutate(row.sum = sum(c_across(where(is.numeric))))
    
    0 讨论(0)
  • 2021-02-08 11:36

    You can use rich selectors with select() inside the call to rowSums()

    df %>% transmute(a, total = rowSums(select(., -a)))
    
    0 讨论(0)
提交回复
热议问题