Nearest Neighbor Search in Python without k-d tree

后端 未结 4 811
余生分开走
余生分开走 2021-02-08 08:16

I\'m beginning to learn Python coming from a C++ background. What I am looking for is a quick and easy way to find the closest (nearest neighbor) of some multidimensional query

相关标签:
4条回答
  • 2021-02-08 08:47

    If concise is your goal, you can do this one-liner:

    In [14]: X = scipy.randn(10,2)
    
    In [15]: X
    Out[15]: 
    array([[ 0.85831163,  1.45039761],
           [ 0.91590236, -0.64937523],
           [-1.19610431, -1.07731673],
           [-0.48454195,  1.64276509],
           [ 0.90944798, -0.42998205],
           [-1.17765553,  0.20858178],
           [-0.29433563, -0.8737285 ],
           [ 0.5115424 , -0.50863231],
           [-0.73882547, -0.52016481],
           [-0.14366935, -0.96248649]])
    
    In [16]: q = scipy.array([0.91, -0.43])
    
    In [17]: scipy.argmin([scipy.inner(q-x,q-x) for x in X])
    Out[17]: 4
    

    If you have several query points:

    In [18]: Q = scipy.array([[0.91, -0.43], [-0.14, -0.96]])
    
    In [19]: [scipy.argmin([scipy.inner(q-x,q-x) for x in X]) for q in Q]
    Out[19]: [4, 9]
    
    0 讨论(0)
  • 2021-02-08 08:52

    For faster search and support for dynamic item insertion, you could use a binary tree for 2D items where greater and less than operator is defined by distance to a reference point (0,0).

    def dist(x1,x2):
        return np.sqrt( (float(x1[0])-float(x2[0]))**2 +(float(x1[1])-float(x2[1]))**2 )
    
    class Node(object):
    
        def __init__(self, item=None,):
            self.item = item
            self.left = None
            self.right = None
    
        def __repr__(self):
            return '{}'.format(self.item)
    
        def _add(self, value, center):
            new_node = Node(value)
            if not self.item:
                self.item = new_node        
            else:
            vdist = dist(value,center)
            idist = dist(self.item,center)
                if vdist > idist:
                    self.right = self.right and self.right._add(value, center) or new_node
                elif vdist < idist:
                    self.left = self.left and self.left._add(value, center) or new_node
                else:
                    print("BSTs do not support repeated items.")
    
            return self # this is necessary!!!
    
        def _isLeaf(self):
            return not self.right and not self.left
    
    class BSTC(object):
    
        def __init__(self, center=[0.0,0.0]):
            self.root = None
        self.count = 0
        self.center = center
    
        def add(self, value):
            if not self.root:
                self.root = Node(value)
            else:
                self.root._add(value,self.center)
        self.count += 1
    
        def __len__(self): return self.count
    
        def closest(self, target):
                gap = float("inf")
                closest = float("inf")
                curr = self.root
                while curr:
                    if dist(curr.item,target) < gap:
                        gap = dist(curr.item, target)
                        closest = curr
                    if target == curr.item:
                        break
                    elif dist(target,self.center) < dist(curr.item,self.center):
                        curr = curr.left
                    else:
                        curr = curr.right
                return closest.item, gap
    
    
    import util
    
    bst = util.BSTC()
    print len(bst)
    
    arr = [(23.2323,34.34535),(23.23,36.34535),(53.23,34.34535),(66.6666,11.11111)]
    for i in range(len(arr)): bst.add(arr[i])
    
    f = (11.111,22.2222)
    print bst.closest(f)
    print map(lambda x: util.dist(f,x), arr)
    
    0 讨论(0)
  • 2021-02-08 08:58

    You can compute all distances scipy.spatial.distance.cdist( X, Y ) or use RTree for dynamic data: http://gispython.org/rtree/docs/class.html .

    0 讨论(0)
  • 2021-02-08 08:59

    Broadcasting is very useful for this kind of thing. I'm not sure if this is what you need, but here I use broadcasting to find the displacement between p (one point in 3 space) and X (a set of 10 points in 3-space).

    import numpy as np
    
    def closest(X, p):
        disp = X - p
        return np.argmin((disp*disp).sum(1))
    
    X = np.random.random((10, 3))
    p = np.random.random(3)
    
    print X
    #array([[ 0.68395953,  0.97882991,  0.68826511],
    #       [ 0.57938059,  0.24713904,  0.32822283],
    #       [ 0.06070267,  0.06561339,  0.62241713],
    #       [ 0.93734468,  0.73026772,  0.33755815],
    #       [ 0.29370809,  0.76298588,  0.68728743],
    #       [ 0.66248449,  0.6023311 ,  0.76704199],
    #       [ 0.53490144,  0.96555923,  0.43994738],
    #       [ 0.23780428,  0.75525843,  0.46067472],
    #       [ 0.84240565,  0.82573202,  0.56029917],
    #       [ 0.66751884,  0.31561133,  0.19244683]])
    print p
    #array([ 0.587416 ,  0.4181857,  0.2539029])
    print closest(X, p)
    #9
    
    0 讨论(0)
提交回复
热议问题