Scale images with PIL preserving transparency and color?

前端 未结 4 1719
花落未央
花落未央 2021-02-08 07:27

Say you want to scale a transparent image but do not yet know the color(s) of the background you will composite it onto later. Unfortunately PIL seems to incorporate the color v

相关标签:
4条回答
  • 2021-02-08 07:47

    Maybe you can fill the whole image with the color you want, and only create the shape in the alpha channnel?

    0 讨论(0)
  • 2021-02-08 07:52

    It appears that PIL doesn't do alpha pre-multiplication before resizing, which is necessary to get the proper results. Fortunately it's easy to do by brute force. You must then do the reverse to the resized result.

    def premultiply(im):
        pixels = im.load()
        for y in range(im.size[1]):
            for x in range(im.size[0]):
                r, g, b, a = pixels[x, y]
                if a != 255:
                    r = r * a // 255
                    g = g * a // 255
                    b = b * a // 255
                    pixels[x, y] = (r, g, b, a)
    
    def unmultiply(im):
        pixels = im.load()
        for y in range(im.size[1]):
            for x in range(im.size[0]):
                r, g, b, a = pixels[x, y]
                if a != 255 and a != 0:
                    r = 255 if r >= a else 255 * r // a
                    g = 255 if g >= a else 255 * g // a
                    b = 255 if b >= a else 255 * b // a
                    pixels[x, y] = (r, g, b, a)
    

    Result: result of premultiply, resize, unmultiply

    0 讨论(0)
  • 2021-02-08 07:53

    sorry for answering myself but this is the only working solution that I know of. It sets the color values of fully transparent pixels to the average of the surrounding non fully transparent pixels to minimize impact of fully transparent pixel colors while resizing. There are special cases where the proper result will not be achieved.

    It is very ugly and slow. I'd be happy to accept your answer if you can come up with something better.

    # might be possible to speed this up by only processing necessary pixels
    #  using scipy dilate, numpy where
    
    import PIL.Image
    
    filename = "trans.png"  # http://qrc-designer.com/stuff/trans.png
    size = (25,25)
    
    import numpy as np
    
    im = PIL.Image.open(filename)
    
    npImRgba = np.asarray(im, dtype=np.uint8)
    npImRgba2 = np.asarray(im, dtype=np.uint8)
    npImRgba2.flags.writeable = True
    lenY = npImRgba.shape[0]
    lenX = npImRgba.shape[1]
    for y in range(npImRgba.shape[0]):
        for x in range(npImRgba.shape[1]):
            if npImRgba[y, x, 3] != 0:  # only change completely transparent pixels
                continue        
            colSum = np.zeros((3), dtype=np.uint16)
            i = 0
            for oy in [-1, 0, 1]:
                for ox in [-1, 0, 1]:
                    if not oy and not ox:
                        continue
                    iy = y + oy
                    if iy < 0:
                        continue
                    if iy >= lenY:
                        continue
                    ix = x + ox
                    if ix < 0:
                        continue
                    if ix >= lenX:
                        continue
                    col = npImRgba[iy, ix]
                    if not col[3]:
                        continue
                    colSum += col[:3]
                    i += 1
            npImRgba2[y, x, :3] = colSum / i
    
    im = PIL.Image.fromarray(npImRgba2)
    im = im.transform(size, PIL.Image.EXTENT, (0,0) + im.size, PIL.Image.LINEAR)
    im.save("slime_"+filename)
    

    result: enter image description here

    0 讨论(0)
  • 2021-02-08 08:06

    You can resample each band individually:

    im.load()
    bands = im.split()
    bands = [b.resize(size, Image.LINEAR) for b in bands]
    im = Image.merge('RGBA', bands)
    

    EDIT

    Maybe by avoiding high transparency values like so (need numpy)

    import numpy as np
    
    # ...
    
    im.load()
    bands = list(im.split())
    a = np.asarray(bands[-1])
    a.flags.writeable = True
    a[a != 0] = 1
    bands[-1] = Image.fromarray(a)
    bands = [b.resize(size, Image.LINEAR) for b in bands]
    a = np.asarray(bands[-1])
    a.flags.writeable = True
    a[a != 0] = 255
    bands[-1] = Image.fromarray(a)
    im = Image.merge('RGBA', bands)
    
    0 讨论(0)
提交回复
热议问题