In Java, what is the difference between these:
Object o1 = ....
o1.getClass().getSimpleName();
o1.getClass().getName();
o1.getClass().getCanonicalName();
getName() – returns the name of the entity (class, interface, array class, primitive type, or void) represented by this Class object, as a String.
getCanonicalName() – returns the canonical name of the underlying class as defined by the Java Language Specification.
getSimpleName() – returns the simple name of the underlying class, that is the name it has been given in the source code.
package com.practice;
public class ClassName {
public static void main(String[] args) {
ClassName c = new ClassName();
Class cls = c.getClass();
// returns the canonical name of the underlying class if it exists
System.out.println("Class = " + cls.getCanonicalName()); //Class = com.practice.ClassName
System.out.println("Class = " + cls.getName()); //Class = com.practice.ClassName
System.out.println("Class = " + cls.getSimpleName()); //Class = ClassName
System.out.println("Class = " + Map.Entry.class.getName()); // -> Class = java.util.Map$Entry
System.out.println("Class = " + Map.Entry.class.getCanonicalName()); // -> Class = java.util.Map.Entry
System.out.println("Class = " + Map.Entry.class.getSimpleName()); // -> Class = Entry
}
}
One difference is that if you use an anonymous class you can get a null value when trying to get the name of the class using the getCanonicalName()
Another fact is that getName()
method behaves differently than the getCanonicalName()
method for inner classes. getName()
uses a dollar as the separator between the enclosing class canonical name and the inner class simple name.
To know more about retrieving a class name in Java.
I've been confused by the wide range of different naming schemes as well, and was just about to ask and answer my own question on this when I found this question here. I think my findings fit it well enough, and complement what's already here. My focus is looking for documentation on the various terms, and adding some more related terms that might crop up in other places.
Consider the following example:
package a.b;
class C {
static class D extends C {
}
D d;
D[] ds;
}
The simple name of D
is D
. That's just the part you wrote when declaring the class. Anonymous classes have no simple name. Class.getSimpleName() returns this name or the empty string. It is possible for the simple name to contain a $
if you write it like this, since $
is a valid part of an identifier as per JLS section 3.8 (even if it is somewhat discouraged).
According to the JLS section 6.7, both a.b.C.D
and a.b.C.D.D.D
would be fully qualified names, but only a.b.C.D
would be the canonical name of D
. So every canonical name is a fully qualified name, but the converse is not always true. Class.getCanonicalName() will return the canonical name or null
.
Class.getName() is documented to return the binary name, as specified in JLS section 13.1. In this case it returns a.b.C$D
for D
and [La.b.C$D;
for D[]
.
This answer demonstrates that it is possible for two classes loaded by the same class loader to have the same canonical name but distinct binary names. Neither name is sufficient to reliably deduce the other: if you have the canonical name, you don't know which parts of the name are packages and which are containing classes. If you have the binary name, you don't know which $
were introduced as separators and which were part of some simple name. (The class file stores the binary name of the class itself and its enclosing class, which allows the runtime to make this distinction.)
Anonymous classes and local classes have no fully qualified names but still have a binary name. The same holds for classes nested inside such classes. Every class has a binary name.
Running javap -v -private
on a/b/C.class
shows that the bytecode refers to the type of d
as La/b/C$D;
and that of the array ds
as [La/b/C$D;
. These are called descriptors, and they are specified in JVMS section 4.3.
The class name a/b/C$D
used in both of these descriptors is what you get by replacing .
by /
in the binary name. The JVM spec apparently calls this the internal form of the binary name. JVMS section 4.2.1 describes it, and states that the difference from the binary name were for historical reasons.
The file name of a class in one of the typical filename-based class loaders is what you get if you interpret the /
in the internal form of the binary name as a directory separator, and append the file name extension .class
to it. It's resolved relative to the class path used by the class loader in question.
public void printReflectionClassNames(){
StringBuffer buffer = new StringBuffer();
Class clazz= buffer.getClass();
System.out.println("Reflection on String Buffer Class");
System.out.println("Name: "+clazz.getName());
System.out.println("Simple Name: "+clazz.getSimpleName());
System.out.println("Canonical Name: "+clazz.getCanonicalName());
System.out.println("Type Name: "+clazz.getTypeName());
}
outputs:
Reflection on String Buffer Class
Name: java.lang.StringBuffer
Simple Name: StringBuffer
Canonical Name: java.lang.StringBuffer
Type Name: java.lang.StringBuffer
It is interesting to note that getCanonicalName()
and getSimpleName()
can raise InternalError
when the class name is malformed. This happens for some non-Java JVM languages, e.g., Scala.
Consider the following (Scala 2.11 on Java 8):
scala> case class C()
defined class C
scala> val c = C()
c: C = C()
scala> c.getClass.getSimpleName
java.lang.InternalError: Malformed class name
at java.lang.Class.getSimpleName(Class.java:1330)
... 32 elided
scala> c.getClass.getCanonicalName
java.lang.InternalError: Malformed class name
at java.lang.Class.getSimpleName(Class.java:1330)
at java.lang.Class.getCanonicalName(Class.java:1399)
... 32 elided
scala> c.getClass.getName
res2: String = C
This can be a problem for mixed language environments or environments that dynamically load bytecode, e.g., app servers and other platform software.
this is best document I found describing getName(), getSimpleName(), getCanonicalName()
https://javahowtodoit.wordpress.com/2014/09/09/java-lang-class-what-is-the-difference-between-class-getname-class-getcanonicalname-and-class-getsimplename/
// Primitive type
int.class.getName(); // -> int
int.class.getCanonicalName(); // -> int
int.class.getSimpleName(); // -> int
// Standard class
Integer.class.getName(); // -> java.lang.Integer
Integer.class.getCanonicalName(); // -> java.lang.Integer
Integer.class.getSimpleName(); // -> Integer
// Inner class
Map.Entry.class.getName(); // -> java.util.Map$Entry
Map.Entry.class.getCanonicalName(); // -> java.util.Map.Entry
Map.Entry.class.getSimpleName(); // -> Entry
// Anonymous inner class
Class<?> anonymousInnerClass = new Cloneable() {}.getClass();
anonymousInnerClass.getName(); // -> somepackage.SomeClass$1
anonymousInnerClass.getCanonicalName(); // -> null
anonymousInnerClass.getSimpleName(); // -> // An empty string
// Array of primitives
Class<?> primitiveArrayClass = new int[0].getClass();
primitiveArrayClass.getName(); // -> [I
primitiveArrayClass.getCanonicalName(); // -> int[]
primitiveArrayClass.getSimpleName(); // -> int[]
// Array of objects
Class<?> objectArrayClass = new Integer[0].getClass();
objectArrayClass.getName(); // -> [Ljava.lang.Integer;
objectArrayClass.getCanonicalName(); // -> java.lang.Integer[]
objectArrayClass.getSimpleName(); // -> Integer[]
Adding local classes, lambdas and the toString()
method to complete the previous two answers. Further, I add arrays of lambdas and arrays of anonymous classes (which do not make any sense in practice though):
package com.example;
public final class TestClassNames {
private static void showClass(Class<?> c) {
System.out.println("getName(): " + c.getName());
System.out.println("getCanonicalName(): " + c.getCanonicalName());
System.out.println("getSimpleName(): " + c.getSimpleName());
System.out.println("toString(): " + c.toString());
System.out.println();
}
private static void x(Runnable r) {
showClass(r.getClass());
showClass(java.lang.reflect.Array.newInstance(r.getClass(), 1).getClass()); // Obtains an array class of a lambda base type.
}
public static class NestedClass {}
public class InnerClass {}
public static void main(String[] args) {
class LocalClass {}
showClass(void.class);
showClass(int.class);
showClass(String.class);
showClass(Runnable.class);
showClass(SomeEnum.class);
showClass(SomeAnnotation.class);
showClass(int[].class);
showClass(String[].class);
showClass(NestedClass.class);
showClass(InnerClass.class);
showClass(LocalClass.class);
showClass(LocalClass[].class);
Object anonymous = new java.io.Serializable() {};
showClass(anonymous.getClass());
showClass(java.lang.reflect.Array.newInstance(anonymous.getClass(), 1).getClass()); // Obtains an array class of an anonymous base type.
x(() -> {});
}
}
enum SomeEnum {
BLUE, YELLOW, RED;
}
@interface SomeAnnotation {}
This is the full output:
getName(): void
getCanonicalName(): void
getSimpleName(): void
toString(): void
getName(): int
getCanonicalName(): int
getSimpleName(): int
toString(): int
getName(): java.lang.String
getCanonicalName(): java.lang.String
getSimpleName(): String
toString(): class java.lang.String
getName(): java.lang.Runnable
getCanonicalName(): java.lang.Runnable
getSimpleName(): Runnable
toString(): interface java.lang.Runnable
getName(): com.example.SomeEnum
getCanonicalName(): com.example.SomeEnum
getSimpleName(): SomeEnum
toString(): class com.example.SomeEnum
getName(): com.example.SomeAnnotation
getCanonicalName(): com.example.SomeAnnotation
getSimpleName(): SomeAnnotation
toString(): interface com.example.SomeAnnotation
getName(): [I
getCanonicalName(): int[]
getSimpleName(): int[]
toString(): class [I
getName(): [Ljava.lang.String;
getCanonicalName(): java.lang.String[]
getSimpleName(): String[]
toString(): class [Ljava.lang.String;
getName(): com.example.TestClassNames$NestedClass
getCanonicalName(): com.example.TestClassNames.NestedClass
getSimpleName(): NestedClass
toString(): class com.example.TestClassNames$NestedClass
getName(): com.example.TestClassNames$InnerClass
getCanonicalName(): com.example.TestClassNames.InnerClass
getSimpleName(): InnerClass
toString(): class com.example.TestClassNames$InnerClass
getName(): com.example.TestClassNames$1LocalClass
getCanonicalName(): null
getSimpleName(): LocalClass
toString(): class com.example.TestClassNames$1LocalClass
getName(): [Lcom.example.TestClassNames$1LocalClass;
getCanonicalName(): null
getSimpleName(): LocalClass[]
toString(): class [Lcom.example.TestClassNames$1LocalClass;
getName(): com.example.TestClassNames$1
getCanonicalName(): null
getSimpleName():
toString(): class com.example.TestClassNames$1
getName(): [Lcom.example.TestClassNames$1;
getCanonicalName(): null
getSimpleName(): []
toString(): class [Lcom.example.TestClassNames$1;
getName(): com.example.TestClassNames$$Lambda$1/1175962212
getCanonicalName(): com.example.TestClassNames$$Lambda$1/1175962212
getSimpleName(): TestClassNames$$Lambda$1/1175962212
toString(): class com.example.TestClassNames$$Lambda$1/1175962212
getName(): [Lcom.example.TestClassNames$$Lambda$1;
getCanonicalName(): com.example.TestClassNames$$Lambda$1/1175962212[]
getSimpleName(): TestClassNames$$Lambda$1/1175962212[]
toString(): class [Lcom.example.TestClassNames$$Lambda$1;
So, here are the rules. First, lets start with primitive types and void
:
void
, all the four methods simply returns its name.Now the rules for the getName()
method:
getName()
) that is the package name followed by a dot (if there is a package), followed by the name of its class-file as generated by the compiler (whithout the suffix .class
). If there is no package, it is simply the name of the class-file. If the class is an inner, nested, local or anonymous class, the compiler should generate at least one $
in its class-file name. Note that for anonymous classes, the class name would end with a dollar-sign followed by a number.$$Lambda$
, followed by a number, followed by a slash, followed by another number.Z
for boolean
, B
for byte
, S
for short
, C
for char
, I
for int
, J
for long
, F
for float
and D
for double
. For non-array classes and interfaces the class descriptor is L
followed by what is given by getName()
followed by ;
. For array classes, the class descriptor is [
followed by the class descriptor of the component type (which may be itself another array class).getName()
method returns its class descriptor. This rule seems to fail only for array classes whose the component type is a lambda (which possibly is a bug), but hopefully this should not matter anyway because there is no point even on the existence of array classes whose component type is a lambda.Now, the toString()
method:
toString()
returns "interface " + getName()
. If it is a primitive, it returns simply getName()
. If it is something else (a class type, even if it is a pretty weird one), it returns "class " + getName()
.The getCanonicalName()
method:
getCanonicalName()
method returns just what the getName()
method returns.getCanonicalName()
method returns null
for anonymous or local classes and for array classes of those.getCanonicalName()
method returns what the getName()
method would replacing the compiler-introduced dollar-signs by dots.getCanonicalName()
method returns null
if the canonical name of the component type is null
. Otherwise, it returns the canonical name of the component type followed by []
.The getSimpleName()
method:
getSimpleName()
returns the name of the class as written in the source file.getSimpleName()
returns an empty String
.getSimpleName()
just returns what the getName()
would return without the package name. This do not makes much sense and looks like a bug for me, but there is no point in calling getSimpleName()
on a lambda class to start with.getSimpleName()
method returns the simple name of the component class followed by []
. This have the funny/weird side-effect that array classes whose component type is an anonymous class have just []
as their simple names.