What\'s the most efficient way to select the second to last of each duplicated set in a pandas dataframe?
For instance I basically want to do this operation:
<
You could groupby/tail(2)
to take the last 2 items, then groupby/head(1)
to take the first item from the tail:
df.groupby(['A','B']).tail(2).groupby(['A','B']).head(1)
If there is only one item in the group, tail(2)
returns just the one item.
For example,
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(10, size=(10**2, 3)), columns=list('ABC'))
result = df.groupby(['A','B']).tail(2).groupby(['A','B']).head(1)
expected = (df.groupby(['A', 'B'], as_index=False).apply(lambda x: x if len(x)==1 else x.iloc[[-2]]).reset_index(level=0, drop=True))
assert expected.sort_index().equals(result)
The builtin groupby methods (such as tail
and head
) are often much faster
than groupby/apply
with custom Python functions. This is especially true if there are a lot of groups:
In [96]: %timeit df.groupby(['A','B']).tail(2).groupby(['A','B']).head(1)
1000 loops, best of 3: 1.7 ms per loop
In [97]: %timeit (df.groupby(['A', 'B'], as_index=False).apply(lambda x: x if len(x)==1 else x.iloc[[-2]]).reset_index(level=0, drop=True))
100 loops, best of 3: 17.9 ms per loop
Alternatively, ayhan suggests a nice improvement:
alt = df.groupby(['A','B']).tail(2).drop_duplicates(['A','B'])
assert expected.sort_index().equals(alt)
In [99]: %timeit df.groupby(['A','B']).tail(2).drop_duplicates(['A','B'])
1000 loops, best of 3: 1.43 ms per loop
With groupby.apply:
df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 2, 3, 3, 4],
'B': np.arange(10), 'C': np.arange(10)})
df
Out:
A B C
0 1 0 0
1 1 1 1
2 1 2 2
3 1 3 3
4 2 4 4
5 2 5 5
6 2 6 6
7 3 7 7
8 3 8 8
9 4 9 9
(df.groupby('A', as_index=False).apply(lambda x: x if len(x)==1 else x.iloc[[-2]])
.reset_index(level=0, drop=True))
Out:
A B C
2 1 2 2
5 2 5 5
7 3 7 7
9 4 9 9
With a different DataFrame, subset two columns:
df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 2, 3, 3, 4],
'B': [1, 1, 2, 1, 2, 2, 2, 3, 3, 4], 'C': np.arange(10)})
df
Out:
A B C
0 1 1 0
1 1 1 1
2 1 2 2
3 1 1 3
4 2 2 4
5 2 2 5
6 2 2 6
7 3 3 7
8 3 3 8
9 4 4 9
(df.groupby(['A', 'B'], as_index=False).apply(lambda x: x if len(x)==1 else x.iloc[[-2]])
.reset_index(level=0, drop=True))
Out:
A B C
1 1 1 1
2 1 2 2
5 2 2 5
7 3 3 7
9 4 4 9