I\'m new in haskell and I\'m looking for some standard functions to work with lists by indexes.
My exact problem is that i want to remove 3 elements after every 5. If i
Since nobody did a version with "unfoldr", here is my take:
drop3after5 lst = concat $ unfoldr chunk lst
where
chunk [] = Nothing
chunk lst = Just (take 5 lst, drop (5+3) lst)
Seems to be the shortest thus far
the take
and drop
functions may be able to help you here.
drop, take :: Int -> [a] -> [a]
from these we could construct a function to do one step.
takeNdropM :: Int -> Int -> [a] -> ([a], [a])
takeNdropM n m list = (take n list, drop (n+m) list)
and then we can use this to reduce our problem
takeEveryNafterEveryM :: Int -> Int -> [a] -> [a]
takeEveryNafterEveryM n m [] = []
takeEveryNafterEveryM n m list = taken ++ takeEveryNafterEveryM n m rest
where
(taken, rest) = takeNdropM n m list
*Main> takeEveryNafterEveryM 5 3 [1..20]
[1,2,3,4,5,9,10,11,12,13,17,18,19,20]
since this is not a primitive form of recursion, it is harder to express this as a simple fold.
so a new folding function could be defined to fit your needs
splitReduce :: ([a] -> ([a], [a])) -> [a] -> [a]
splitReduce f [] = []
splitReduce f list = left ++ splitReduce f right
where
(left, right) = f list
then the definition of takeEveryNafterEveryM
is simply
takeEveryNafterEveryM2 n m = splitReduce (takeNdropM 5 3)
You can use List.splitAt together with drop:
import Data.List (splitAt)
f :: [a] -> [a]
f [] = []
f xs = let (h, t) = splitAt 5 xs in h ++ f (drop 3 t)
Now f [1..12]
yields [1,2,3,4,5,9,10,11,12]
. Note that this function can be expressed more elegantly using uncurry and Control.Arrow.second:
import Data.List (splitAt)
import Control.Arrow (second)
f :: [a] -> [a]
f [] = []
f xs = uncurry (++) $ second (f . drop 3) $ splitAt 5 xs
Since we're using Control.Arrow anyway, we can opt to drop splitAt
and instead call in the help of Control.Arrow.(&&&), combined with take:
import Control.Arrow ((&&&))
f :: [a] -> [a]
f [] = []
f xs = uncurry (++) $ (take 5 &&& (f . drop 8)) xs
But now it's clear that an even shorter solution is the following:
f :: [a] -> [a]
f [] = []
f xs = take 5 xs ++ (f . drop 8) xs
As Chris Lutz notes, this solution can then be generalized as follows:
nofm :: Int -> Int -> [a] -> [a]
nofm _ _ [] = []
nofm n m xs = take n xs ++ (nofm n m . drop m) xs
Now nofm 5 8
yields the required function. Note that a solution with splitAt
may still be more efficient!
Apply some mathematics using map, snd, filter, mod and zip:
f :: [a] -> [a]
f = map snd . filter (\(i, _) -> i `mod` 8 < (5 :: Int)) . zip [0..]
The idea here is that we pair each element in the list with its index, a natural number i. We then remove those elements for which i % 8 > 4. The general version of this solution is:
nofm :: Int -> Int -> [a] -> [a]
nofm n m = map snd . filter (\(i, _) -> i `mod` m < n) . zip [0..]
Here is my solution:
remElements step num=rem' step num
where rem' _ _ []=[]
rem' s n (x:xs)
|s>0 = x:rem' (s-1) num xs
|n==0 = x:rem' (step-1) num xs
|otherwise= rem' 0 (n-1) xs
example:
*Main> remElements 5 3 [1..20]
[1,2,3,4,5,9,10,11,12,13,17,18,19,20]
You can count your elements easily:
strip' (x:xs) n | n == 7 = strip' xs 0
| n >= 5 = strip' xs (n+1)
| n < 5 = x : strip' xs (n+1)
strip l = strip' l 0
Though open-coding looks shorter:
strip (a:b:c:d:e:_:_:_:xs) = a:b:c:d:e:strip xs
strip (a:b:c:d:e:xs) = a:b:c:d:e:[]
strip xs = xs
Here is my take:
deleteAt idx xs = lft ++ rgt
where (lft, (_:rgt)) = splitAt idx xs