I am using PySpark. I have a column (\'dt\') in a dataframe (\'canon_evt\') that this a timestamp. I am trying to remove seconds from a DateTime value. It is originally read in
I think zero323 has the best answer. It's kind of annoying that Spark doesn't support this natively, given how easy it is to implement. For posterity, here is a function that I use:
def trunc(date, format):
"""Wraps spark's trunc fuction to support day, minute, and hour"""
import re
import pyspark.sql.functions as func
# Ghetto hack to get the column name from Column object or string:
try:
colname = re.match(r"Column<.?'(.*)'>", str(date)).groups()[0]
except AttributeError:
colname = date
alias = "trunc(%s, %s)" % (colname, format)
if format in ('year', 'YYYY', 'yy', 'month', 'mon', 'mm'):
return func.trunc(date, format).alias(alias)
elif format in ('day', 'DD'):
return func.date_sub(date, 0).alias(alias)
elif format in ('min', ):
return ((func.round(func.unix_timestamp(date) / 60) * 60).cast("timestamp")).alias(alias)
elif format in ('hour', ):
return ((func.round(func.unix_timestamp(date) / 3600) * 3600).cast("timestamp")).alias(alias)
Converting to Unix timestamps and basic arithmetics should to the trick:
from pyspark.sql import Row
from pyspark.sql.functions import col, unix_timestamp, round
df = sc.parallelize([
Row(dt='1970-01-01 00:00:00'),
Row(dt='2015-09-16 05:39:46'),
Row(dt='2015-09-16 05:40:46'),
Row(dt='2016-03-05 02:00:10'),
]).toDF()
## unix_timestamp converts string to Unix timestamp (bigint / long)
## in seconds. Divide by 60, round, multiply by 60 and cast
## should work just fine.
##
dt_truncated = ((round(unix_timestamp(col("dt")) / 60) * 60)
.cast("timestamp"))
df.withColumn("dt_truncated", dt_truncated).show(10, False)
## +-------------------+---------------------+
## |dt |dt_truncated |
## +-------------------+---------------------+
## |1970-01-01 00:00:00|1970-01-01 00:00:00.0|
## |2015-09-16 05:39:46|2015-09-16 05:40:00.0|
## |2015-09-16 05:40:46|2015-09-16 05:41:00.0|
## |2016-03-05 02:00:10|2016-03-05 02:00:00.0|
## +-------------------+---------------------+
This question was asked a few years ago, but if anyone else comes across it, as of Spark v2.3 this has been added as a feature. Now this is as simple as (assumes canon_evt
is a dataframe with timestamp column dt
that we want to remove the seconds from)
from pyspark.sql.functions import date_trunc
canon_evt = canon_evt.withColumn('dt', date_trunc('minute', canon_evt.dt))
truncate the time stamp to some other minutes say 5 minutes or 10 mins or 7 min
from pyspark.sql.functions import *
df = spark.createDataFrame([("2016-03-11 09:00:07", 1, 5),("2016-03-11 09:00:57", 2, 5)]).toDF("date", "val","val2")
w = df.groupBy('val',window("date", "5 seconds")).agg(sum("val1").alias("sum"))
w.select(w.window.start.cast("string").alias("start"),w.window.end.cast("string").alias("end"), "sum", "val").show(10, False)