Consider the following code:
class A
{
B* b; // an A object owns a B object
A() : b(NULL) { } // we don\'t know what b will be when constructing A
A quick test of Martin York's assertion that this is a premature optimisation, and that new/delete are optimised well beyond the ability of mere programmers to improve. Obviously the questioner will have to time his own code to see whether avoiding new/delete helps him, but it seems to me that for certain classes and uses it will make a big difference:
#include <iostream>
#include <vector>
int g_construct = 0;
int g_destruct = 0;
struct A {
std::vector<int> vec;
A (int a, int b) : vec((a*b) % 2) { ++g_construct; }
~A() {
++g_destruct;
}
};
int main() {
const int times = 10*1000*1000;
#if DYNAMIC
std::cout << "dynamic\n";
A *x = new A(1,3);
for (int i = 0; i < times; ++i) {
delete x;
x = new A(i,3);
}
#else
std::cout << "automatic\n";
char x[sizeof(A)];
A* yzz = new (x) A(1,3);
for (int i = 0; i < times; ++i) {
yzz->~A();
new (x) A(i,3);
}
#endif
std::cout << g_construct << " constructors and " << g_destruct << " destructors\n";
}
$ g++ allocperf.cpp -oallocperf -O3 -DDYNAMIC=0 -g && time ./allocperf
automatic
10000001 constructors and 10000000 destructors
real 0m7.718s
user 0m7.671s
sys 0m0.030s
$ g++ allocperf.cpp -oallocperf -O3 -DDYNAMIC=1 -g && time ./allocperf
dynamic
10000001 constructors and 10000000 destructors
real 0m15.188s
user 0m15.077s
sys 0m0.047s
This is roughly what I expected: the GMan-style (destruct/placement new) code takes twice as long, and is presumably doing twice as much allocation. If the vector member of A is replaced with an int, then the GMan-style code takes a fraction of a second. That's GCC 3.
$ g++-4 allocperf.cpp -oallocperf -O3 -DDYNAMIC=1 -g && time ./allocperf
dynamic
10000001 constructors and 10000000 destructors
real 0m5.969s
user 0m5.905s
sys 0m0.030s
$ g++-4 allocperf.cpp -oallocperf -O3 -DDYNAMIC=0 -g && time ./allocperf
automatic
10000001 constructors and 10000000 destructors
real 0m2.047s
user 0m1.983s
sys 0m0.000s
This I'm not so sure about, though: now the delete/new takes three times as long as the destruct/placement new version.
[Edit: I think I've figured it out - GCC 4 is faster on the 0-sized vectors, in effect subtracting a constant time from both versions of the code. Changing (a*b)%2
to (a*b)%2+1
restores the 2:1 time ratio, with 3.7s vs 7.5]
Note that I've not taken any special steps to correctly align the stack array, but printing the address shows it's 16-aligned.
Also, -g doesn't affect the timings. I left it in accidentally after I was looking at the objdump to check that -O3 hadn't completely removed the loop. That pointers called yzz because searching for "y" didn't go quite as well as I'd hoped. But I've just re-run without it.
Simply reserve the memory required for b (via a pool or by hand) and reuse it each time you delete/new instead of reallocating each time.
Example :
class A
{
B* b; // an A object owns a B object
bool initialized;
public:
A() : b( malloc( sizeof(B) ) ), initialized(false) { } // We reserve memory for b
~A() { if(initialized) destroy(); free(b); } // release memory only once we don't use it anymore
void calledVeryOften(…)
{
if (initialized)
destroy();
create();
}
private:
void destroy() { b->~B(); initialized = false; } // hand call to the destructor
void create( param1, param2, param3, param4 )
{
b = new (b) B( param1, param2, param3, param4 ); // in place new : only construct, don't allocate but use the memory that the provided pointer point to
initialized = true;
}
};
In some cases a Pool or ObjectPool could be a better implementation of the same idea.
The construction/destruction cost will then only be dependante on the constructor and destructor of the B class.
Just have a pile of previously used Bs, and re-use them.
I'd go with boost::scoped_ptr here:
class A: boost::noncopyable
{
typedef boost::scoped_ptr<B> b_ptr;
b_ptr pb_;
public:
A() : pb_() {}
void calledVeryOften( /*…*/ )
{
pb_.reset( new B( params )); // old instance deallocated
// safely use *pb_ as reference to instance of B
}
};
No need for hand-crafted destructor, A
is non-copyable, as it should be in your original code, not to leak memory on copy/assignment.
I'd suggest to re-think the design though if you need to re-allocate some inner state object very often. Look into Flyweight and State patterns.
Like the others have already suggested: Try placement new..
Here is a complete example:
#include <new>
#include <stdio.h>
class B
{
public:
int dummy;
B (int arg)
{
dummy = arg;
printf ("C'Tor called\n");
}
~B ()
{
printf ("D'tor called\n");
}
};
void called_often (B * arg)
{
// call D'tor without freeing memory:
arg->~B();
// call C'tor without allocating memory:
arg = new(arg) B(10);
}
int main (int argc, char **args)
{
B test(1);
called_often (&test);
}
How about allocating the memory for B once (or for it's biggest possible variant) and using placement new?
A would store char memB[sizeof(BiggestB)];
and a B*
. Sure, you'd need to manually call the destructors, but no memory would be allocated/deallocated.
void* p = memB;
B* b = new(p) SomeB();
...
b->~B(); // explicit destructor call when needed.