MatchError while accessing vector column in Spark 2.0

后端 未结 3 1973
一个人的身影
一个人的身影 2020-11-27 08:14

I am trying to create a LDA model on a JSON file.

Creating a spark context with the JSON file :

import org.apache.spark.sql.SparkSession

val spa         


        
相关标签:
3条回答
  • 2020-11-27 08:40

    Solution is very simple guys.. find below

    //import org.apache.spark.mllib.linalg.Vector
    import org.apache.spark.ml.linalg.Vector
    
    0 讨论(0)
  • 2020-11-27 08:53

    I changed:

    val ldaDF = countVectors.map { 
                 case Row(id: String, countVector: Vector) => (id, countVector) 
                }
    

    to:

    val ldaDF = countVectors.map { case Row(docId: String, features: MLVector) => 
                                   (docId.toLong, Vectors.fromML(features)) }
    

    And it worked like a charm! It is aligned with what @zero323 has written.

    List of imports:

    import org.apache.spark.ml.feature.{CountVectorizer, RegexTokenizer, StopWordsRemover}
    import org.apache.spark.ml.linalg.{Vector => MLVector}
    import org.apache.spark.mllib.clustering.{LDA, OnlineLDAOptimizer}
    import org.apache.spark.mllib.linalg.Vectors
    import org.apache.spark.sql.{Row, SparkSession}
    
    0 讨论(0)
  • 2020-11-27 09:03

    This has nothing to do with sparsity. Since Spark 2.0.0 ML Transformers no longer generate o.a.s.mllib.linalg.VectorUDT but o.a.s.ml.linalg.VectorUDT and are mapped locally to subclasses of o.a.s.ml.linalg.Vector. These are not compatible with old MLLib API which is moving towards deprecation in Spark 2.0.0.

    You can convert between to "old" using Vectors.fromML:

    import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
    import org.apache.spark.ml.linalg.{Vectors => NewVectors}
    
    OldVectors.fromML(NewVectors.dense(1.0, 2.0, 3.0))
    OldVectors.fromML(NewVectors.sparse(5, Seq(0 -> 1.0, 2 -> 2.0, 4 -> 3.0)))
    

    but it make more sense to use ML implementation of LDA if you already use ML transformers.

    For convenience you can use implicit conversions:

    import scala.languageFeature.implicitConversions
    
    object VectorConversions {
      import org.apache.spark.mllib.{linalg => mllib}
      import org.apache.spark.ml.{linalg => ml}
    
      implicit def toNewVector(v: mllib.Vector) = v.asML
      implicit def toOldVector(v: ml.Vector) = mllib.Vectors.fromML(v)
    }
    
    0 讨论(0)
提交回复
热议问题