A good question for Spark experts.
I am processing data in a map
operation (RDD). Within the mapper function, I need to lookup objects of class A
Since A
is not serializable the easiest solution is to create yout own serializable type A1
with all data from A
required for computation. Then use the new lookup table in broadcast.
This is exactly the targeted use case for broadcast.
Broadcasted variables are transmitted once and use torrents to move efficiently to all executors, and stay in memory / local disk until you no longer need them.
Serialization often pops up as an issue when using others' interfaces. If you can enforce that the objects you consume are serializable, that's going to be the best solution. If this is impossible, your life gets a little more complicated. If you can't serialize the A
objects, then you have to create them on the executors for each task. If they're stored in a file somewhere, this would look something like:
rdd.mapPartitions { it =>
val lookupTable = loadLookupTable(path)
it.map(elem => fn(lookupTable, elem))
}
Note that if you're using this model, then you have to load the lookup table once per task -- you can't benefit from the cross-task persistence of broadcast variables.
EDIT: Here's another model, which I believe lets you share the lookup table across tasks per JVM.
class BroadcastableLookupTable {
@transient val lookupTable: LookupTable[A] = null
def get: LookupTable[A] = {
if (lookupTable == null)
lookupTable = < load lookup table from disk>
lookupTable
}
}
This class can be broadcast (nothing substantial is transmitted) and the first time it's called per JVM, you'll load the lookup table and return it.
In case serialisation turns out to be impossible, how about storing the lookup objects in a database? It's not the easiest solution, granted, but should work just fine. I could recommend checking e.g. spark-redis, but I am sure there are better solution out there.