Intraclass Correlation in Python Module?

前端 未结 5 1369
抹茶落季
抹茶落季 2021-02-07 14:19

I\'m looking to calculate intraclass correlation (ICC) in Python. I haven\'t been able to find an existing module that has this feature. Is there an alternate name, or should I

相关标签:
5条回答
  • 2021-02-07 14:51

    The R package psych has an implementation of the Intraclass Correlations (ICC) that calculates many types of variants including ICC(1,1), ICC(1,k), ICC(2,1), ICC(2,k), ICC(3,1) and ICC(3,k) plus other metrics.

    This page has a good comparison between the different variants,

    You can use the R ICC function via rpy2 package.

    Example:

    1. First install psych and lme4 in R:
    install.packages("psych")
    install.packages("lme4")
    
    1. Calculate ICC coefficients in Python using rpy2:
    import rpy2
    from rpy2.robjects import IntVector, pandas2ri
    from rpy2.robjects.packages import importr
    
    psych = importr("psych")
    
    values = rpy2.robjects.r.matrix(
        IntVector(
            [9,    2,   5,    8,
            6,    1,   3,    2,
            8,    4,   6,    8,
            7,    1,   2,    6,
            10,   5,   6,    9,
            6,   2,   4,    7]),
        ncol=4, byrow=True
    )
    
    icc = psych.ICC(values)
    
    # Convert to Pandas DataFrame
    icc_df = pandas2ri.rpy2py(icc[0])
    

    Results:

                                type    ICC        F           df1   df2    p          lower bound   upper bound  
      Single_raters_absolute    ICC1    0.165783   1.794916    5.0   18.0   0.164720   -0.132910     0.722589     
      Single_random_raters      ICC2    0.289790   11.026650   5.0   15.0   0.000135   0.018791      0.761107     
      Single_fixed_raters       ICC3    0.714829   11.026650   5.0   15.0   0.000135   0.342447      0.945855     
      Average_raters_absolute   ICC1k   0.442871   1.794916    5.0   18.0   0.164720   -0.884193     0.912427     
      Average_random_raters     ICC2k   0.620080   11.026650   5.0   15.0   0.000135   0.071153      0.927240     
      Average_fixed_raters      ICC3k   0.909311   11.026650   5.0   15.0   0.000135   0.675657      0.985891  
    
    0 讨论(0)
  • 2021-02-07 15:00

    You can find an implementation at ICC or Brain_Data.icc

    0 讨论(0)
  • 2021-02-07 15:04

    The pengouin library computes ICC in 6 different ways, along with associated confidence levels and p values.

    You can install it with pip install pingouin or conda install -c conda-forge pingouin

    import pingouin as pg
    data = pg.read_dataset('icc')
    icc = pg.intraclass_corr(data=data, targets='Wine', raters='Judge',
                             ratings='Scores')
    
    data.head()
    
    |    |   Wine | Judge   |   Scores |
    |---:|-------:|:--------|---------:|
    |  0 |      1 | A       |        1 |
    |  1 |      2 | A       |        1 |
    |  2 |      3 | A       |        3 |
    |  3 |      4 | A       |        6 |
    |  4 |      5 | A       |        6 |
    |  5 |      6 | A       |        7 |
    |  6 |      7 | A       |        8 |
    |  7 |      8 | A       |        9 |
    |  8 |      1 | B       |        2 |
    |  9 |      2 | B       |        3 |
    

    icc

    |    | Type   | Description             |   ICC |      F |   df1 |   df2 |        pval | CI95%        |
    |---:|:-------|:------------------------|------:|-------:|------:|------:|------------:|:-------------|
    |  0 | ICC1   | Single raters absolute  | 0.773 | 11.199 |     5 |    12 | 0.000346492 | [0.39, 0.96] |
    |  1 | ICC2   | Single random raters    | 0.783 | 27.966 |     5 |    10 | 1.42573e-05 | [0.25, 0.96] |
    |  2 | ICC3   | Single fixed raters     | 0.9   | 27.966 |     5 |    10 | 1.42573e-05 | [0.65, 0.98] |
    |  3 | ICC1k  | Average raters absolute | 0.911 | 11.199 |     5 |    12 | 0.000346492 | [0.65, 0.99] |
    |  4 | ICC2k  | Average random raters   | 0.915 | 27.966 |     5 |    10 | 1.42573e-05 | [0.5, 0.99]  |
    |  5 | ICC3k  | Average fixed raters    | 0.964 | 27.966 |     5 |    10 | 1.42573e-05 | [0.85, 0.99] |
    
    0 讨论(0)
  • 2021-02-07 15:09

    There are several implementations of the ICC in R. These can be used from Python via the rpy2 package. Example:

    from rpy2.robjects import DataFrame, FloatVector, IntVector
    from rpy2.robjects.packages import importr
    from math import isclose
    
    groups = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
              4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8]
    values = [1, 2, 0, 1, 1, 3, 3, 2, 3, 8, 1, 4, 6, 4, 3,
              3, 6, 5, 5, 6, 7, 5, 6, 2, 8, 7, 7, 9, 9, 9, 9, 8]
    
    r_icc = importr("ICC")
    df = DataFrame({"groups": IntVector(groups),
                    "values": FloatVector(values)})
    icc_res = r_icc.ICCbare("groups", "values", data=df)
    icc_val = icc_res[0] # icc_val now holds the icc value
    
    # check whether icc value equals reference value
    print(isclose(icc_val, 0.728, abs_tol=0.001))
    
    0 讨论(0)
  • 2021-02-07 15:18

    Based on Brain_Data, I modified the code in order to calculate the correlation coefficients ICC(2,1), ICC(2,k), ICC(3,1) or ICC(3,k) for data input as a table Y (subjects in rows and repeated measurements in columns).

    import os
    import numpy as np
    from numpy import ones, kron, mean, eye, hstack, dot, tile
    from numpy.linalg import pinv
    
    def icc(Y, icc_type='ICC(2,1)'):
        ''' Calculate intraclass correlation coefficient
    
        ICC Formulas are based on:
        Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in
        assessing rater reliability. Psychological bulletin, 86(2), 420.
        icc1:  x_ij = mu + beta_j + w_ij
        icc2/3:  x_ij = mu + alpha_i + beta_j + (ab)_ij + epsilon_ij
        Code modifed from nipype algorithms.icc
        https://github.com/nipy/nipype/blob/master/nipype/algorithms/icc.py
    
        Args:
            Y: The data Y are entered as a 'table' ie. subjects are in rows and repeated
                measures in columns
            icc_type: type of ICC to calculate. (ICC(2,1), ICC(2,k), ICC(3,1), ICC(3,k)) 
        Returns:
            ICC: (np.array) intraclass correlation coefficient
        '''
    
        [n, k] = Y.shape
    
        # Degrees of Freedom
        dfc = k - 1
        dfe = (n - 1) * (k-1)
        dfr = n - 1
    
        # Sum Square Total
        mean_Y = np.mean(Y)
        SST = ((Y - mean_Y) ** 2).sum()
    
        # create the design matrix for the different levels
        x = np.kron(np.eye(k), np.ones((n, 1)))  # sessions
        x0 = np.tile(np.eye(n), (k, 1))  # subjects
        X = np.hstack([x, x0])
    
        # Sum Square Error
        predicted_Y = np.dot(np.dot(np.dot(X, np.linalg.pinv(np.dot(X.T, X))),
                                    X.T), Y.flatten('F'))
        residuals = Y.flatten('F') - predicted_Y
        SSE = (residuals ** 2).sum()
    
        MSE = SSE / dfe
    
        # Sum square column effect - between colums
        SSC = ((np.mean(Y, 0) - mean_Y) ** 2).sum() * n
        MSC = SSC / dfc  # / n (without n in SPSS results)
    
        # Sum Square subject effect - between rows/subjects
        SSR = SST - SSC - SSE
        MSR = SSR / dfr
    
        if icc_type == 'icc1':
            # ICC(2,1) = (mean square subject - mean square error) /
            # (mean square subject + (k-1)*mean square error +
            # k*(mean square columns - mean square error)/n)
            # ICC = (MSR - MSRW) / (MSR + (k-1) * MSRW)
            NotImplementedError("This method isn't implemented yet.")
    
        elif icc_type == 'ICC(2,1)' or icc_type == 'ICC(2,k)':
            # ICC(2,1) = (mean square subject - mean square error) /
            # (mean square subject + (k-1)*mean square error +
            # k*(mean square columns - mean square error)/n)
            if icc_type == 'ICC(2,k)':
                k = 1
            ICC = (MSR - MSE) / (MSR + (k-1) * MSE + k * (MSC - MSE) / n)
    
        elif icc_type == 'ICC(3,1)' or icc_type == 'ICC(3,k)':
            # ICC(3,1) = (mean square subject - mean square error) /
            # (mean square subject + (k-1)*mean square error)
            if icc_type == 'ICC(3,k)':
                k = 1
            ICC = (MSR - MSE) / (MSR + (k-1) * MSE)
    
        return ICC
    
    0 讨论(0)
提交回复
热议问题