I\'m looking to calculate intraclass correlation (ICC) in Python. I haven\'t been able to find an existing module that has this feature. Is there an alternate name, or should I
The R package psych has an implementation of the Intraclass Correlations (ICC) that calculates many types of variants including ICC(1,1), ICC(1,k), ICC(2,1), ICC(2,k), ICC(3,1) and ICC(3,k) plus other metrics.
This page has a good comparison between the different variants,
You can use the R ICC function via rpy2 package.
Example:
psych
and lme4
in R:install.packages("psych")
install.packages("lme4")
import rpy2
from rpy2.robjects import IntVector, pandas2ri
from rpy2.robjects.packages import importr
psych = importr("psych")
values = rpy2.robjects.r.matrix(
IntVector(
[9, 2, 5, 8,
6, 1, 3, 2,
8, 4, 6, 8,
7, 1, 2, 6,
10, 5, 6, 9,
6, 2, 4, 7]),
ncol=4, byrow=True
)
icc = psych.ICC(values)
# Convert to Pandas DataFrame
icc_df = pandas2ri.rpy2py(icc[0])
Results:
type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 0.165783 1.794916 5.0 18.0 0.164720 -0.132910 0.722589
Single_random_raters ICC2 0.289790 11.026650 5.0 15.0 0.000135 0.018791 0.761107
Single_fixed_raters ICC3 0.714829 11.026650 5.0 15.0 0.000135 0.342447 0.945855
Average_raters_absolute ICC1k 0.442871 1.794916 5.0 18.0 0.164720 -0.884193 0.912427
Average_random_raters ICC2k 0.620080 11.026650 5.0 15.0 0.000135 0.071153 0.927240
Average_fixed_raters ICC3k 0.909311 11.026650 5.0 15.0 0.000135 0.675657 0.985891
You can find an implementation at ICC or Brain_Data.icc
The pengouin library computes ICC in 6 different ways, along with associated confidence levels and p values.
You can install it with pip install pingouin
or conda install -c conda-forge pingouin
import pingouin as pg
data = pg.read_dataset('icc')
icc = pg.intraclass_corr(data=data, targets='Wine', raters='Judge',
ratings='Scores')
data.head()
| | Wine | Judge | Scores |
|---:|-------:|:--------|---------:|
| 0 | 1 | A | 1 |
| 1 | 2 | A | 1 |
| 2 | 3 | A | 3 |
| 3 | 4 | A | 6 |
| 4 | 5 | A | 6 |
| 5 | 6 | A | 7 |
| 6 | 7 | A | 8 |
| 7 | 8 | A | 9 |
| 8 | 1 | B | 2 |
| 9 | 2 | B | 3 |
icc
| | Type | Description | ICC | F | df1 | df2 | pval | CI95% |
|---:|:-------|:------------------------|------:|-------:|------:|------:|------------:|:-------------|
| 0 | ICC1 | Single raters absolute | 0.773 | 11.199 | 5 | 12 | 0.000346492 | [0.39, 0.96] |
| 1 | ICC2 | Single random raters | 0.783 | 27.966 | 5 | 10 | 1.42573e-05 | [0.25, 0.96] |
| 2 | ICC3 | Single fixed raters | 0.9 | 27.966 | 5 | 10 | 1.42573e-05 | [0.65, 0.98] |
| 3 | ICC1k | Average raters absolute | 0.911 | 11.199 | 5 | 12 | 0.000346492 | [0.65, 0.99] |
| 4 | ICC2k | Average random raters | 0.915 | 27.966 | 5 | 10 | 1.42573e-05 | [0.5, 0.99] |
| 5 | ICC3k | Average fixed raters | 0.964 | 27.966 | 5 | 10 | 1.42573e-05 | [0.85, 0.99] |
There are several implementations of the ICC in R. These can be used from Python via the rpy2 package. Example:
from rpy2.robjects import DataFrame, FloatVector, IntVector
from rpy2.robjects.packages import importr
from math import isclose
groups = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8]
values = [1, 2, 0, 1, 1, 3, 3, 2, 3, 8, 1, 4, 6, 4, 3,
3, 6, 5, 5, 6, 7, 5, 6, 2, 8, 7, 7, 9, 9, 9, 9, 8]
r_icc = importr("ICC")
df = DataFrame({"groups": IntVector(groups),
"values": FloatVector(values)})
icc_res = r_icc.ICCbare("groups", "values", data=df)
icc_val = icc_res[0] # icc_val now holds the icc value
# check whether icc value equals reference value
print(isclose(icc_val, 0.728, abs_tol=0.001))
Based on Brain_Data, I modified the code in order to calculate the correlation coefficients ICC(2,1), ICC(2,k), ICC(3,1) or ICC(3,k) for data input as a table Y (subjects in rows and repeated measurements in columns).
import os
import numpy as np
from numpy import ones, kron, mean, eye, hstack, dot, tile
from numpy.linalg import pinv
def icc(Y, icc_type='ICC(2,1)'):
''' Calculate intraclass correlation coefficient
ICC Formulas are based on:
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in
assessing rater reliability. Psychological bulletin, 86(2), 420.
icc1: x_ij = mu + beta_j + w_ij
icc2/3: x_ij = mu + alpha_i + beta_j + (ab)_ij + epsilon_ij
Code modifed from nipype algorithms.icc
https://github.com/nipy/nipype/blob/master/nipype/algorithms/icc.py
Args:
Y: The data Y are entered as a 'table' ie. subjects are in rows and repeated
measures in columns
icc_type: type of ICC to calculate. (ICC(2,1), ICC(2,k), ICC(3,1), ICC(3,k))
Returns:
ICC: (np.array) intraclass correlation coefficient
'''
[n, k] = Y.shape
# Degrees of Freedom
dfc = k - 1
dfe = (n - 1) * (k-1)
dfr = n - 1
# Sum Square Total
mean_Y = np.mean(Y)
SST = ((Y - mean_Y) ** 2).sum()
# create the design matrix for the different levels
x = np.kron(np.eye(k), np.ones((n, 1))) # sessions
x0 = np.tile(np.eye(n), (k, 1)) # subjects
X = np.hstack([x, x0])
# Sum Square Error
predicted_Y = np.dot(np.dot(np.dot(X, np.linalg.pinv(np.dot(X.T, X))),
X.T), Y.flatten('F'))
residuals = Y.flatten('F') - predicted_Y
SSE = (residuals ** 2).sum()
MSE = SSE / dfe
# Sum square column effect - between colums
SSC = ((np.mean(Y, 0) - mean_Y) ** 2).sum() * n
MSC = SSC / dfc # / n (without n in SPSS results)
# Sum Square subject effect - between rows/subjects
SSR = SST - SSC - SSE
MSR = SSR / dfr
if icc_type == 'icc1':
# ICC(2,1) = (mean square subject - mean square error) /
# (mean square subject + (k-1)*mean square error +
# k*(mean square columns - mean square error)/n)
# ICC = (MSR - MSRW) / (MSR + (k-1) * MSRW)
NotImplementedError("This method isn't implemented yet.")
elif icc_type == 'ICC(2,1)' or icc_type == 'ICC(2,k)':
# ICC(2,1) = (mean square subject - mean square error) /
# (mean square subject + (k-1)*mean square error +
# k*(mean square columns - mean square error)/n)
if icc_type == 'ICC(2,k)':
k = 1
ICC = (MSR - MSE) / (MSR + (k-1) * MSE + k * (MSC - MSE) / n)
elif icc_type == 'ICC(3,1)' or icc_type == 'ICC(3,k)':
# ICC(3,1) = (mean square subject - mean square error) /
# (mean square subject + (k-1)*mean square error)
if icc_type == 'ICC(3,k)':
k = 1
ICC = (MSR - MSE) / (MSR + (k-1) * MSE)
return ICC