I\'m creating a figure with multiple subplots. One of these subplots is giving me some trouble, as none of the axes corners or centers are free (or can be freed up) for placing
After spending way too much time on this, I've come up with the following satisfactory solution (the Transformations Tutorial definitely helped):
bapad = plt.rcParams['legend.borderaxespad']
fontsize = plt.rcParams['font.size']
axline = plt.rcParams['axes.linewidth'] #need this, otherwise the result will be off by a few pixels
pad_points = bapad*fontsize + axline #padding is defined in relative to font size
pad_inches = pad_points/72.0 #convert from points to inches
pad_pixels = pad_inches*fig.dpi #convert from inches to pixels using the figure's dpi
Then, I found that both of the following work and give the same value for the padding:
# Define inverse transform, transforms display coordinates (pixels) to axes coordinates
inv = ax[1].transAxes.inverted()
# Inverse transform two points on the display and find the relative distance
pad_axes = inv.transform((pad_pixels, 0)) - inv.transform((0,0))
pad_xaxis = pad_axes[0]
or
# Find how may pixels there are on the x-axis
x_pixels = ax[1].transAxes.transform((1,0)) - ax[1].transAxes.transform((0,0))
# Compute the ratio between the pixel offset and the total amount of pixels
pad_xaxis = pad_pixels/x_pixels[0]
And then set the legend with:
ax[1].legend(loc=(pad_xaxis,0.6))
Plot:
I saw the answer you posted and tried it out. The problem however is that it is also depended on the figure size.
Here's a new try:
import numpy
import matplotlib.pyplot as plt
x = numpy.linspace(0, 10, 10000)
y = numpy.cos(x) + 2.
x_value = .014 #Offset by eye
y_value = .55
fig, ax = plt.subplots(1, 2, sharex = False, sharey = False)
fig.set_size_inches(50,30)
ax[0].plot(x, y, label = "cos")
ax[0].set_ylim([0.8,3.2])
ax[0].legend(loc=2)
line1 ,= ax[1].plot(x,y)
ax[1].set_ylim([0.8,3.2])
axbox = ax[1].get_position()
fig.legend([line1], ["cos"], loc = (axbox.x0 + x_value, axbox.y0 + y_value))
plt.show()
So what I am now doing is basically getting the coordinates from the subplot. I then create the legend based on the dimensions of the entire figure. Hence, the figure size does not change anything to the legend positioning anymore.
With the values for x_value
and y_value
the legend can be positioned in the subplot. x_value
has been eyeballed for a good correspondence with the "normal" legend. This value can be changed at your desire. y_value
determines the height of the legend.
Good luck!