I want to get the rank of each element, so I use argsort
in numpy
:
np.argsort(np.array((1,1,1,2,2,3,3,3,3)))
array([0, 1, 2, 3, 4, 5, 6
If you don't mind a dependency on scipy, you can use scipy.stats.rankdata, with method='min'
:
In [14]: a
Out[14]: array([1, 1, 1, 2, 2, 3, 3, 3, 3])
In [15]: from scipy.stats import rankdata
In [16]: rankdata(a, method='min')
Out[16]: array([1, 1, 1, 4, 4, 6, 6, 6, 6])
Note that rankdata
starts the ranks at 1. To start at 0, subtract 1 from the result:
In [17]: rankdata(a, method='min') - 1
Out[17]: array([0, 0, 0, 3, 3, 5, 5, 5, 5])
If you don't want the scipy dependency, you can use numpy.unique to compute the ranking. Here's a function that computes the same result as rankdata(x, method='min') - 1
:
import numpy as np
def rankmin(x):
u, inv, counts = np.unique(x, return_inverse=True, return_counts=True)
csum = np.zeros_like(counts)
csum[1:] = counts[:-1].cumsum()
return csum[inv]
For example,
In [137]: x = np.array([60, 10, 0, 30, 20, 40, 50])
In [138]: rankdata(x, method='min') - 1
Out[138]: array([6, 1, 0, 3, 2, 4, 5])
In [139]: rankmin(x)
Out[139]: array([6, 1, 0, 3, 2, 4, 5])
In [140]: a = np.array([1,1,1,2,2,3,3,3,3])
In [141]: rankdata(a, method='min') - 1
Out[141]: array([0, 0, 0, 3, 3, 5, 5, 5, 5])
In [142]: rankmin(a)
Out[142]: array([0, 0, 0, 3, 3, 5, 5, 5, 5])
By the way, a single call to argsort()
does not give ranks. You can find an assortment of approaches to ranking in the question Rank items in an array using Python/NumPy, including how to do it using argsort()
.
I've written a function for the same purpose. It uses pure python and numpy only. Please have a look. I put comments as well.
def my_argsort(array):
# this type conversion let us work with python lists and pandas series
array = np.array(array)
# create mapping for unique values
# it's a dictionary where keys are values from the array and
# values are desired indices
unique_values = list(set(array))
mapping = dict(zip(unique_values, np.argsort(unique_values)))
# apply mapping to our array
# np.vectorize works similar map(), and can work with dictionaries
array = np.vectorize(mapping.get)(array)
return array
Hope that helps.
Alternatively, pandas series has a rank
method which does what you need with the min
method:
import pandas as pd
pd.Series((1,1,1,2,2,3,3,3,3)).rank(method="min")
# 0 1
# 1 1
# 2 1
# 3 4
# 4 4
# 5 6
# 6 6
# 7 6
# 8 6
# dtype: float64
With focus on performance, here's an approach -
def rank_repeat_based(arr):
idx = np.concatenate(([0],np.flatnonzero(np.diff(arr))+1,[arr.size]))
return np.repeat(idx[:-1],np.diff(idx))
For a generic case with the elements in input array not already sorted, we would need to use argsort()
to keep track of the positions. So, we would have a modified version, like so -
def rank_repeat_based_generic(arr):
sidx = np.argsort(arr,kind='mergesort')
idx = np.concatenate(([0],np.flatnonzero(np.diff(arr[sidx]))+1,[arr.size]))
return np.repeat(idx[:-1],np.diff(idx))[sidx.argsort()]
Runtime test
Testing out all the approaches listed thus far to solve the problem on a large dataset.
Sorted array case :
In [96]: arr = np.sort(np.random.randint(1,100,(10000)))
In [97]: %timeit rankdata(arr, method='min') - 1
1000 loops, best of 3: 635 µs per loop
In [98]: %timeit rankmin(arr)
1000 loops, best of 3: 495 µs per loop
In [99]: %timeit (pd.Series(arr).rank(method="min")-1).values
1000 loops, best of 3: 826 µs per loop
In [100]: %timeit rank_repeat_based(arr)
10000 loops, best of 3: 200 µs per loop
Unsorted case :
In [106]: arr = np.random.randint(1,100,(10000))
In [107]: %timeit rankdata(arr, method='min') - 1
1000 loops, best of 3: 963 µs per loop
In [108]: %timeit rankmin(arr)
1000 loops, best of 3: 869 µs per loop
In [109]: %timeit (pd.Series(arr).rank(method="min")-1).values
1000 loops, best of 3: 1.17 ms per loop
In [110]: %timeit rank_repeat_based_generic(arr)
1000 loops, best of 3: 1.76 ms per loop