Given a list of variant length features:
features = [
[\'f1\', \'f2\', \'f3\'],
[\'f2\', \'f4\', \'f5\', \'f6\'],
[\'f1\', \'f2\']
]
Here's one approach with NumPy methods and outputting as pandas dataframe -
import numpy as np
import pandas as pd
lens = list(map(len, features))
N = len(lens)
unq, col = np.unique(np.concatenate(features),return_inverse=1)
row = np.repeat(np.arange(N), lens)
out = np.zeros((N,len(unq)),dtype=int)
out[row,col] = 1
indx = ['s'+str(i+1) for i in range(N)]
df_out = pd.DataFrame(out, columns=unq, index=indx)
Sample input, output -
In [80]: features
Out[80]: [['f1', 'f2', 'f3'], ['f2', 'f4', 'f5', 'f6'], ['f1', 'f2']]
In [81]: df_out
Out[81]:
f1 f2 f3 f4 f5 f6
s1 1 1 1 0 0 0
s2 0 1 0 1 1 1
s3 1 1 0 0 0 0
You can use MultiLabelBinarizer present in scikit which is specifically used for doing this.
Code for your example:
features = [
['f1', 'f2', 'f3'],
['f2', 'f4', 'f5', 'f6'],
['f1', 'f2']
]
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
new_features = mlb.fit_transform(features)
Output:
array([[1, 1, 1, 0, 0, 0],
[0, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 0, 0]])
This can also be used in a pipeline, along with other feature_selection utilities.