Keras - Validation Loss and Accuracy stuck at 0

前端 未结 1 522
夕颜
夕颜 2021-02-07 09:34

I am trying to train a simple 2 layer Fully Connected neural net for Binary Classification in Tensorflow keras. I have split my data into Training and Validation sets with a 80-

相关标签:
1条回答
  • 2021-02-07 09:44
    • If you use keras instead of tf.keras everything works fine.

    • With tf.keras, I even tried validation_data = [X_train, y_train], this also gives zero accuracy.

    Here is a demonstration:

    model.fit(X_train, y_train, validation_data=[X_train.to_numpy(), y_train.to_numpy()], 
    epochs=10, batch_size=64)
    
    Epoch 1/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.7898 - accuracy: 0.6087 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 2/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.6710 - accuracy: 0.6500 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 3/10
    8/8 [==============================] - 0s 5ms/step - loss: 0.6748 - accuracy: 0.6500 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 4/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.6716 - accuracy: 0.6370 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 5/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.6085 - accuracy: 0.6326 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 6/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.6744 - accuracy: 0.6326 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 7/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.6102 - accuracy: 0.6522 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 8/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.7032 - accuracy: 0.6109 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 9/10
    8/8 [==============================] - 0s 5ms/step - loss: 0.6283 - accuracy: 0.6717 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    Epoch 10/10
    8/8 [==============================] - 0s 5ms/step - loss: 0.6120 - accuracy: 0.6652 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
    

    So, definitely there is some issue with tensorflow implementation of fit.

    I dug up the source, and it seems the part responsible for validation_data:

    ...
    ...
            # Run validation.
            if validation_data and self._should_eval(epoch, validation_freq):
              val_x, val_y, val_sample_weight = (
                  data_adapter.unpack_x_y_sample_weight(validation_data))
              val_logs = self.evaluate(
                  x=val_x,
                  y=val_y,
                  sample_weight=val_sample_weight,
                  batch_size=validation_batch_size or batch_size,
                  steps=validation_steps,
                  callbacks=callbacks,
                  max_queue_size=max_queue_size,
                  workers=workers,
                  use_multiprocessing=use_multiprocessing,
                  return_dict=True)
              val_logs = {'val_' + name: val for name, val in val_logs.items()}
              epoch_logs.update(val_logs)
    

    internally calls model.evaluate, as we have already established evaluate works fine, I realized the only culprit could be unpack_x_y_sample_weight.

    So, I looked into the implementation:

    def unpack_x_y_sample_weight(data):
      """Unpacks user-provided data tuple."""
      if not isinstance(data, tuple):
        return (data, None, None)
      elif len(data) == 1:
        return (data[0], None, None)
      elif len(data) == 2:
        return (data[0], data[1], None)
      elif len(data) == 3:
        return (data[0], data[1], data[2])
    
      raise ValueError("Data not understood.")
    
    

    It's crazy, but if you just pass a tuple instead of a list, everything works fine due to the check inside unpack_x_y_sample_weight. (Your labels are missing after this step and somehow the data is getting fixed inside evaluate, so you're training with no reasonable labels, this seems like a bug but the documentation clearly states to pass tuple)

    The following code gives correct validation accuracy and loss:

    model.fit(X_train, y_train, validation_data=(X_train.to_numpy(), y_train.to_numpy()), 
    epochs=10, batch_size=64)
    
    Epoch 1/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.5832 - accuracy: 0.6696 - val_loss: 0.6892 - val_accuracy: 0.6674
    Epoch 2/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.6385 - accuracy: 0.6804 - val_loss: 0.8984 - val_accuracy: 0.5565
    Epoch 3/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.6822 - accuracy: 0.6391 - val_loss: 0.6556 - val_accuracy: 0.6739
    Epoch 4/10
    8/8 [==============================] - 0s 6ms/step - loss: 0.6276 - accuracy: 0.6609 - val_loss: 1.0691 - val_accuracy: 0.5630
    Epoch 5/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.7048 - accuracy: 0.6239 - val_loss: 0.6474 - val_accuracy: 0.6326
    Epoch 6/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.6545 - accuracy: 0.6500 - val_loss: 0.6659 - val_accuracy: 0.6043
    Epoch 7/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.5796 - accuracy: 0.6913 - val_loss: 0.6891 - val_accuracy: 0.6435
    Epoch 8/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.5915 - accuracy: 0.6891 - val_loss: 0.5307 - val_accuracy: 0.7152
    Epoch 9/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.5571 - accuracy: 0.7000 - val_loss: 0.5465 - val_accuracy: 0.6957
    Epoch 10/10
    8/8 [==============================] - 0s 7ms/step - loss: 0.7133 - accuracy: 0.6283 - val_loss: 0.7046 - val_accuracy: 0.6413
    

    So, as this seems to be a bug, I have just opened a relevant issue at Tensorflow Github repo:

    https://github.com/tensorflow/tensorflow/issues/39370

    0 讨论(0)
提交回复
热议问题