I am trying to display a pair plot by creating from scatter_matrix in pandas dataframe. This is how the pair plot is created:
# Create dataframe from data in X_t
first of all use
pip install mglearn
then import the mglearn
the code will be like this...
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
import mglearn
import matplotlib.pyplot as plt
iris_dataframe=pd.DataFrame(X_train,columns=iris_dataset.feature_names)
grr=pd.scatter_matrix(iris_dataframe,
c=y_train,figsize=(15,15),marker='o',hist_kwds={'bins':20},
s=60,alpha=.8,cmap=mglearn.cm3)
plt.show()
Just an update to Vikash's excellent answer. The last two lines should now be:
grr = pd.plotting.scatter_matrix(iris_dataframe, c=Y, figsize=(15, 15), marker='o',
hist_kwds={'bins': 20}, s=60, alpha=.8)
The scatter_matrix function has been moved to the plotting package, so the original answer, while correct is now deprecated.
So the complete code would now be:
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import datasets
iris_dataset = datasets.load_iris()
X = iris_dataset.data
Y = iris_dataset.target
iris_dataframe = pd.DataFrame(X, columns=iris_dataset.feature_names)
# create a scatter matrix from the dataframe, color by y_train
grr = pd.plotting.scatter_matrix(iris_dataframe, c=Y, figsize=(15, 15), marker='o',
hist_kwds={'bins': 20}, s=60, alpha=.8)
This code worked for me using Python 3.5.2:
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import datasets
iris_dataset = datasets.load_iris()
X = iris_dataset.data
Y = iris_dataset.target
iris_dataframe = pd.DataFrame(X, columns=iris_dataset.feature_names)
# Create a scatter matrix from the dataframe, color by y_train
grr = pd.plotting.scatter_matrix(iris_dataframe, c=Y, figsize=(15, 15), marker='o',
hist_kwds={'bins': 20}, s=60, alpha=.8)
For pandas version < v0.20.0.
Thanks to michael-szczepaniak for pointing out that this API had been deprecated.
grr = pd.scatter_matrix(iris_dataframe, c=Y, figsize=(15, 15), marker='o',
hist_kwds={'bins': 20}, s=60, alpha=.8)
I just had to remove the cmap=mglearn.cm3
piece, because I was not able to make mglearn work. There is a version mismatch issue with sklearn.
To not display the image and save it directly to file you can use this method:
plt.savefig('foo.png')
Also remove
# %matplotlib inline
This is also possible using seaborn:
import seaborn as sns
df = sns.load_dataset("iris")
sns.pairplot(df, hue="species")
I finally know how to do it with PyCharm.
Just import matploblib.plotting
as plt
instead:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import mglearn
from pandas.plotting import scatter_matrix
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris_dataset = load_iris()
X_train,X_test,Y_train,Y_test = train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
iris_dataframe = pd.DataFrame(X_train,columns=iris_dataset.feature_names)
grr = scatter_matrix(iris_dataframe,c = Y_train,figsize = (15,15),marker = 'o',
hist_kwds={'bins':20},s=60,alpha=.8,cmap = mglearn.cm3)
plt.show()
Then it works perfect as below: