Applying a function along a numpy array

后端 未结 4 691
情话喂你
情话喂你 2021-02-07 05:00

I\'ve the following numpy ndarray.

[ -0.54761371  17.04850603   4.86054302]

I want to apply this function to all elements of the array

相关标签:
4条回答
  • 2021-02-07 05:42

    Just to clarify what apply_along_axis is doing, or not doing.

    def sigmoid(x):
      print(x)    # show the argument
      return 1 / (1 + math.exp(-x))
    
    In [313]: np.apply_along_axis(sigmoid, -1,np.array([ -0.54761371  ,17.04850603 ,4.86054302])) 
    [ -0.54761371  17.04850603   4.86054302]   # the whole array
    ...
    TypeError: only length-1 arrays can be converted to Python scalars
    

    The reason you get the error is that apply_along_axis passes a whole 1d array to your function. I.e. the axis. For your 1d array this is the same as

    sigmoid(np.array([ -0.54761371  ,17.04850603 ,4.86054302]))
    

    The apply_along_axis does nothing for you.

    As others noted,switching to np.exp allows sigmoid to work with the array (with or without the apply_along_axis wrapper).

    0 讨论(0)
  • 2021-02-07 05:45

    Use np.exp and that will work on numpy arrays in a vectorized fashion:

    >>> def sigmoid(x):
    ...     return 1 / (1 + np.exp(-x))
    ...
    >>> sigmoid(scores)
    array([  6.33581776e-01,   3.94391811e-08,   7.68673281e-03])
    >>>
    

    You will likely not get any faster than this. Consider:

    >>> def sigmoid(x):
    ...     return 1 / (1 + np.exp(-x))
    ...
    

    And:

    >>> def sigmoidv(x):
    ...   return 1 / (1 + math.exp(-x))
    ...
    >>> vsigmoid = np.vectorize(sigmoidv)
    

    Now, to compare the timings. With a small (size 100) array:

    >>> t = timeit.timeit("vsigmoid(arr)", "from __main__ import vsigmoid, np; arr = np.random.randn(100)", number=100)
    >>> t
    0.006894525984534994
    >>> t = timeit.timeit("sigmoid(arr)", "from __main__ import sigmoid, np; arr = np.random.randn(100)", number=100)
    >>> t
    0.0007238480029627681
    

    So, still an order-of-magnitude difference with small arrays. This performance differences stays relatively constant, with a 10,000 size array:

    >>> t = timeit.timeit("vsigmoid(arr)", "from __main__ import vsigmoid, np; arr = np.random.randn(10000)", number=100)
    >>> t
    0.3823414359940216
    >>> t = timeit.timeit("sigmoid(arr)", "from __main__ import sigmoid, np; arr = np.random.randn(10000)", number=100)
    >>> t
    0.011259705002885312
    

    And finally with a size 100,000 array:

    >>> t = timeit.timeit("vsigmoid(arr)", "from __main__ import vsigmoid, np; arr = np.random.randn(100000)", number=100)
    >>> t
    3.7680041620042175
    >>> t = timeit.timeit("sigmoid(arr)", "from __main__ import sigmoid, np; arr = np.random.randn(100000)", number=100)
    >>> t
    0.09544878199812956
    
    0 讨论(0)
  • 2021-02-07 05:47

    scipy already implements the function Luckily, Python allows us to rename things upon import:

     from scipy.special import expit as sigmoid
    
    0 讨论(0)
  • 2021-02-07 05:49

    Function numpy.apply_along_axis is not good for this purpose. Try to use numpy.vectorize to vectorize your function: https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html This function defines a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns an single or tuple of numpy array as output.

    import numpy as np
    import math
    
    # custom function
    def sigmoid(x):
      return 1 / (1 + math.exp(-x))
    
    # define vectorized sigmoid
    sigmoid_v = np.vectorize(sigmoid)
    
    # test
    scores = np.array([ -0.54761371,  17.04850603,   4.86054302])
    print sigmoid_v(scores)
    

    Output: [ 0.36641822 0.99999996 0.99231327]

    Performance test which shows that the scipy.special.expit is the best solution to calculate logistic function and vectorized variant comes to the worst:

    import numpy as np
    import math
    import timeit
    
    def sigmoid_(x):
      return 1 / (1 + math.exp(-x))
    sigmoidv = np.vectorize(sigmoid_)
    
    def sigmoid(x):
       return 1 / (1 + np.exp(x))
    
    print timeit.timeit("sigmoidv(scores)", "from __main__ import sigmoidv, np; scores = np.random.randn(100)", number=25),\
    timeit.timeit("sigmoid(scores)", "from __main__ import sigmoid, np; scores = np.random.randn(100)",  number=25),\
    timeit.timeit("expit(scores)", "from scipy.special import expit; import numpy as np;   scores = np.random.randn(100)",  number=25)
    
    print timeit.timeit("sigmoidv(scores)", "from __main__ import sigmoidv, np; scores = np.random.randn(1000)", number=25),\
    timeit.timeit("sigmoid(scores)", "from __main__ import sigmoid, np; scores = np.random.randn(1000)",  number=25),\
    timeit.timeit("expit(scores)", "from scipy.special import expit; import numpy as np;   scores = np.random.randn(1000)",  number=25)
    
    print timeit.timeit("sigmoidv(scores)", "from __main__ import sigmoidv, np; scores = np.random.randn(10000)", number=25),\
    timeit.timeit("sigmoid(scores)", "from __main__ import sigmoid, np; scores = np.random.randn(10000)",  number=25),\
    timeit.timeit("expit(scores)", "from scipy.special import expit; import numpy as np;   scores = np.random.randn(10000)",  number=25)
    

    Results:

    size        vectorized      numpy                 expit
    N=100:   0.00179314613342 0.000460863113403 0.000132083892822
    N=1000:  0.0122890472412  0.00084114074707  0.000464916229248
    N=10000: 0.109477043152   0.00530695915222  0.00424313545227
    
    0 讨论(0)
提交回复
热议问题