I have a pandas dataframe
in which one column of text strings contains comma-separated values. I want to split each CSV field and create a new row per entry (as
Based on the excellent @DMulligan's solution, here is a generic vectorized (no loops) function which splits a column of a dataframe into multiple rows, and merges it back to the original dataframe. It also uses a great generic change_column_order
function from this answer.
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
def split_df(dataframe, col_name, sep):
orig_col_index = dataframe.columns.tolist().index(col_name)
orig_index_name = dataframe.index.name
orig_columns = dataframe.columns
dataframe = dataframe.reset_index() # we need a natural 0-based index for proper merge
index_col_name = (set(dataframe.columns) - set(orig_columns)).pop()
df_split = pd.DataFrame(
pd.DataFrame(dataframe[col_name].str.split(sep).tolist())
.stack().reset_index(level=1, drop=1), columns=[col_name])
df = dataframe.drop(col_name, axis=1)
df = pd.merge(df, df_split, left_index=True, right_index=True, how='inner')
df = df.set_index(index_col_name)
df.index.name = orig_index_name
# merge adds the column to the last place, so we need to move it back
return change_column_order(df, col_name, orig_col_index)
Example:
df = pd.DataFrame([['a:b', 1, 4], ['c:d', 2, 5], ['e:f:g:h', 3, 6]],
columns=['Name', 'A', 'B'], index=[10, 12, 13])
df
Name A B
10 a:b 1 4
12 c:d 2 5
13 e:f:g:h 3 6
split_df(df, 'Name', ':')
Name A B
10 a 1 4
10 b 1 4
12 c 2 5
12 d 2 5
13 e 3 6
13 f 3 6
13 g 3 6
13 h 3 6
Note that it preserves the original index and order of the columns. It also works with dataframes which have non-sequential index.
I have come up with the following solution to this problem:
def iter_var1(d):
for _, row in d.iterrows():
for v in row["var1"].split(","):
yield (v, row["var2"])
new_a = DataFrame.from_records([i for i in iter_var1(a)],
columns=["var1", "var2"])
Series and DataFrame methods define a .explode() method that explodes lists into separate rows. See the docs section on Exploding a list-like column.
Since you have a list of comma separated strings, split the string on comma to get a list of elements, then call explode
on that column.
df = pd.DataFrame({'var1': ['a,b,c', 'd,e,f'], 'var2': [1, 2]})
df
var1 var2
0 a,b,c 1
1 d,e,f 2
df.assign(var1=df['var1'].str.split(',')).explode('var1')
var1 var2
0 a 1
0 b 1
0 c 1
1 d 2
1 e 2
1 f 2
Note that explode
only works on a single column (for now).
NaNs and empty lists get the treatment they deserve without you having to jump through hoops to get it right.
df = pd.DataFrame({'var1': ['d,e,f', '', np.nan], 'var2': [1, 2, 3]})
df
var1 var2
0 d,e,f 1
1 2
2 NaN 3
df['var1'].str.split(',')
0 [d, e, f]
1 []
2 NaN
df.assign(var1=df['var1'].str.split(',')).explode('var1')
var1 var2
0 d 1
0 e 1
0 f 1
1 2 # empty list entry becomes empty string after exploding
2 NaN 3 # NaN left un-touched
This is a serious advantage over ravel
+ repeat
-based solutions (which ignore empty lists completely, and choke on NaNs).
How about something like this:
In [55]: pd.concat([Series(row['var2'], row['var1'].split(','))
for _, row in a.iterrows()]).reset_index()
Out[55]:
index 0
0 a 1
1 b 1
2 c 1
3 d 2
4 e 2
5 f 2
Then you just have to rename the columns
I came up with a solution for dataframes with arbitrary numbers of columns (while still only separating one column's entries at a time).
def splitDataFrameList(df,target_column,separator):
''' df = dataframe to split,
target_column = the column containing the values to split
separator = the symbol used to perform the split
returns: a dataframe with each entry for the target column separated, with each element moved into a new row.
The values in the other columns are duplicated across the newly divided rows.
'''
def splitListToRows(row,row_accumulator,target_column,separator):
split_row = row[target_column].split(separator)
for s in split_row:
new_row = row.to_dict()
new_row[target_column] = s
row_accumulator.append(new_row)
new_rows = []
df.apply(splitListToRows,axis=1,args = (new_rows,target_column,separator))
new_df = pandas.DataFrame(new_rows)
return new_df
Here's a function I wrote for this common task. It's more efficient than the Series
/stack
methods. Column order and names are retained.
def tidy_split(df, column, sep='|', keep=False):
"""
Split the values of a column and expand so the new DataFrame has one split
value per row. Filters rows where the column is missing.
Params
------
df : pandas.DataFrame
dataframe with the column to split and expand
column : str
the column to split and expand
sep : str
the string used to split the column's values
keep : bool
whether to retain the presplit value as it's own row
Returns
-------
pandas.DataFrame
Returns a dataframe with the same columns as `df`.
"""
indexes = list()
new_values = list()
df = df.dropna(subset=[column])
for i, presplit in enumerate(df[column].astype(str)):
values = presplit.split(sep)
if keep and len(values) > 1:
indexes.append(i)
new_values.append(presplit)
for value in values:
indexes.append(i)
new_values.append(value)
new_df = df.iloc[indexes, :].copy()
new_df[column] = new_values
return new_df
With this function, the original question is as simple as:
tidy_split(a, 'var1', sep=',')