I have a function in PHP that encrypts and decrypts strings:
function encrypt_decrypt($action, $string)
{
$output = false;
$key = \'mykeyhereblah\';
$i
Why not use the same mcrypt that PHP uses?
The problem is that Rijndael is NOT exactly AES, so I am not sure if the other solutions will really work here. The Rijndael allows different pairs of block sizes and keys, AES is a particular case of Rijndael with key sizes os 128, 192 and 256 but block size always 128. So use the same mcrypt
that PHP uses will guarantee the same result.
This sample in C++ is exactly what you need, here is the output:
plain text: the book is on the table!
cipher text: dGhlIGJvb2sgaXMgb24gdGhlIHRhYmxlIQ==
back to: the book is on the table!
sample cipher text: 2Fa9cICuUFa/UnmAAa5FjXZK4ht9q3cN2qgk1pCvDSs=
sample plain text: “:F‚m&X”Öwÿ ï@í`D’ühà¢äè"˜‚)
The output of your sample is exactly like your PHP code (just test it! :-)). The code below compiles by itself.
... note that I used OpenSSL just for md5() and my Base64 class, that is the same one that I use for many things, but you can replace for other md5/base64 solution, then you get rid of OpenSSL. Pretty easy. Apple is moving to CommonCrypto now...
/////////////////////////
// Base64.h
#ifndef BASE64_H
#define BASE64_H
#include <string>
#include <vector>
class Base64
{
public:
static std::string encode( const unsigned char * p_buffer, size_t p_size );
static std::string encode( const std::string & p_string );
static std::string encode( const std::vector< unsigned char > & p_buffer );
static std::string decode( const std::string & p_input );
static void decode( const std::string & p_input, std::vector< unsigned char > & p_output );
};
#endif // BASE64_H
/////////////////////////
// Base64.cpp
//#include "Base64.h"
#include <openssl/evp.h>
using namespace std;
string Base64::encode( const unsigned char * p_buffer, size_t p_size )
{
unsigned char * output( new unsigned char[ p_size * 4 / 3 + 4 ] );
size_t outputLength( EVP_EncodeBlock( output, p_buffer, static_cast< int >( p_size ) ) );
string ret( reinterpret_cast< char * >( output ), outputLength );
delete [] output;
return ret;
}
string Base64::encode( const string & p_string )
{
return Base64::encode( reinterpret_cast< const unsigned char * >( p_string.c_str() ), p_string.size() );
}
string Base64::encode( const vector< unsigned char > & p_buffer )
{
return Base64::encode( &p_buffer[ 0 ], p_buffer.size() );
}
void Base64::decode( const string & p_input, vector< unsigned char > & p_output )
{
p_output.resize( p_input.length() * 3 / 4 );
size_t outputLength( EVP_DecodeBlock( &p_output[ 0 ], reinterpret_cast< const unsigned char * >( p_input.c_str() ), static_cast< int >( p_input.size() ) ) );
size_t length( p_input.length() );
if ( p_input[ length - 2 ] == '=' )
{
outputLength -= 2;
}
else if ( p_input[ length - 1 ] == '=' )
{
outputLength--;
}
p_output.resize( outputLength );
}
string Base64::decode( const string & p_input )
{
vector< unsigned char > output;
Base64::decode( p_input, output );
return reinterpret_cast< const char * >( &output[ 0 ] );
}
/////////////////////////
// main.cpp
#include <iostream>
#include <string>
#include <regex>
#include <openssl/evp.h>
#include <mcrypt.h>
#define MCRYPT_MODE_CBC "cbc"
using namespace std;
string md5( const string & p_string )
{
EVP_MD_CTX mdContext;
const EVP_MD * md;
unsigned int outputLength;
unsigned char output[ 16 ];
OpenSSL_add_all_digests();
if ( !( md = EVP_get_digestbyname( "MD5" ) ) )
{
throw std::runtime_error( "Unable to init MD5 digest." );
}
EVP_MD_CTX_init( &mdContext );
EVP_DigestInit_ex( &mdContext, md, 0 );
EVP_DigestUpdate( &mdContext, p_string.c_str(), p_string.length() );
EVP_DigestFinal_ex( &mdContext, output, &outputLength );
EVP_MD_CTX_cleanup( &mdContext );
char outputString[ sizeof( output ) * 2 + 1 ];
for ( int i( 0 ); i < sizeof( output ); ++i )
{
snprintf( outputString + i * 2, 2 + 1, "%02x", output[ i ] );
}
return outputString;
}
string trimString( const string & p_string )
{
string ret( p_string );
regex functionRegex( "\\s*(.*)\\s*", regex_constants::icase );
smatch matches;
if ( regex_search( p_string, matches, functionRegex ) )
{
ret = matches[ 1 ].str();
}
return ret;
}
void mcrypt_encrypt( vector< unsigned char > & p_output, const char * p_cryptEngine, const string & p_key, const vector< unsigned char > & p_input, const char * p_mode, const string & p_iv )
{
MCRYPT td = mcrypt_module_open( ( char * )p_cryptEngine, 0, ( char * )p_mode, 0 );
if ( td == MCRYPT_FAILED )
{
throw std::runtime_error( "can't init mcrypt" );
}
if ( mcrypt_generic_init( td, ( char * )p_key.c_str(), mcrypt_enc_get_key_size( td ), ( char * )p_iv.c_str() ) < 0 )
{
throw std::runtime_error( "can't setup key/iv" );
}
p_output.reserve( p_input.size() );
copy( p_input.begin(), p_input.end(), back_inserter( p_output ) );
mcrypt_generic( td, ( void * )&p_output[ 0 ], (int)p_output.size() );
mcrypt_generic_end( td );
}
void mcrypt_decrypt( vector< unsigned char > & p_output, const char * p_cryptEngine, const string & p_key, const vector< unsigned char > & p_input, const char * p_mode, const string & p_iv )
{
MCRYPT td = mcrypt_module_open( ( char * )p_cryptEngine, 0, ( char * )p_mode, 0 );
if ( td == MCRYPT_FAILED )
{
throw std::runtime_error( "can't init mcrypt" );
}
if ( mcrypt_generic_init( td, ( char * )p_key.c_str(), mcrypt_enc_get_key_size( td ), ( char * )p_iv.c_str() ) < 0 )
{
throw std::runtime_error( "can't setup key/iv" );
}
p_output.reserve( p_input.size() );
copy( p_input.begin(), p_input.end(), back_inserter( p_output ) );
mdecrypt_generic( td, ( void * )&p_output[ 0 ], (int)p_output.size() );
mcrypt_generic_end( td );
}
string encrypt_decrypt( const string & action, const string & p_string )
{
string output = "";
string key = "mykeyhereblah";
string iv = md5( md5( key ) );
vector< unsigned char > cipherText, plainText;
if ( action == "encrypt" )
{
copy( p_string.begin(), p_string.end(), back_inserter( plainText ) );
mcrypt_encrypt( cipherText, MCRYPT_RIJNDAEL_256, md5( key ), plainText, MCRYPT_MODE_CBC, iv );
output = Base64::encode( cipherText );
}
else if ( action == "decrypt" )
{
Base64::decode( p_string, cipherText );
mcrypt_decrypt( plainText, MCRYPT_RIJNDAEL_256, md5( key ), cipherText, MCRYPT_MODE_CBC, iv );
output = string( ( char* )&plainText[ 0 ], plainText.size() );
output = trimString( output );
}
return output;
}
int main( int argc, char * argv[] )
{
string plainText = "the book is on the table!";
string cipherText = encrypt_decrypt( "encrypt", plainText );
cout << "plain text: " << plainText << endl;
cout << "cipher text: " << cipherText << endl;
cout << "back to: " << encrypt_decrypt( "decrypt", cipherText ) << endl;
cout << endl;
cout << "your sample: " << encrypt_decrypt( "decrypt", "2Fa9cICuUFa/UnmAAa5FjXZK4ht9q3cN2qgk1pCvDSs=" ) << endl;
return 0;
}
So you want to encrypt using AES256 in CBC mode. The library you are looking for is CommonCrypto and you can find a good article about it here:http://robnapier.net/aes-commoncrypto.
You will also need an MD5 function that you can find here: http://www.makebetterthings.com/iphone/how-to-get-md5-and-sha1-in-objective-c-ios-sdk/
Your code should look something like this:
NSString *originalString,*keyString;
NSData *key = [[self md5:keyString] dataUsingEncoding:NSUTF8StringEncoding];
NSData *iv = [[self md5:[self md5:key]] dataUsingEncoding:NSUTF8StringEncoding];
NSData *data = [originalString dataUsingEncoding:NSUTF8StringEncoding];
NSMutableData *cipherData = [NSMutableData dataWithLength:data.length + kCCBlockSizeAES128]; //The block size of MCRYPT_RIJNDAEL_256 is just like AES128
size_t outLength;
CCCryptorStatus result
= CCCrypt(kCCEncrypt, // operation, replace with kCCDecrypt to decrypt
kCCAlgorithmAES, // Same as MCRYPT_RIJNDAEL_256
nil, // CBC mode
key.bytes, // key
32, // Since you are using AES256
iv.bytes,// iv
data.bytes, // dataIn
data.length, // dataInLength,
cipherData.mutableBytes, // dataOut
cipherData.length, // dataOutAvailable
&outLength); // dataOutMoved
NSString resultString = [cipherData base64Encoding];
And make sure you are using the same UTF8 encoding in both cases, and use this import:
#import <CommonCrypto/CommonCryptor.h>
I am pretty sure this should work.
EDIT: the key length should be 32 since you are using AES256 256bit=32bytes. The MD5 output wouldn't match this length by default I think.
I think this category might help you
NSString+hashes
also don't forget to import
#import <CommonCrypto/CommonCryptor.h>
I use http://searchcode.com/codesearch/view/14846108 for MD5 encryption... and prove me wrong but it suppose MD5 is just one way encryption, it can't be decrypted just like that. It can be decrypted with brute force or with a large database of encrypted strings. That's why it's suppose to be safe.
Ok there are a few things to point out here... First of all MD5 is not going to give you enough entropy to consider that key secure. While the IV can be even public it should anyway be random and thus, md5 is not working there either. Mind that having a fixed IV is more or less not having it at all.
If you want to really use a passphrase to generate your encryption key the best way to do it is to use PBKDF2
Now to the code:
This is the code I'm currently using in one of my project
- (NSData *)AES256EncryptWithKey:(NSString *)key andIV:(const void*)iv
{
// 'key' should be 32 bytes for AES256, will be null-padded otherwise
char keyPtr[kCCKeySizeAES256 + 1]; // room for terminator (unused)
bzero( keyPtr, sizeof( keyPtr ) ); // fill with zeroes (for padding)
// fetch key data
[key getCString:keyPtr maxLength:sizeof( keyPtr ) encoding:NSUTF8StringEncoding];
NSUInteger dataLength = [self length];
//See the doc: For block ciphers, the output size will always be less than or
//equal to the input size plus the size of one block.
//That's why we need to add the size of one block here
size_t bufferSize = dataLength + kCCBlockSizeAES128;
void *buffer = malloc( bufferSize );
size_t numBytesEncrypted = 0;
CCCryptorStatus cryptStatus = CCCrypt( kCCEncrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding,
keyPtr, kCCKeySizeAES256,
iv /* initialization vector (optional) */,
[self bytes], dataLength, /* input */
buffer, bufferSize, /* output */
&numBytesEncrypted );
if( cryptStatus == kCCSuccess )
{
//the returned NSData takes ownership of the buffer and will free it on deallocation
return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted];
}
free( buffer ); //free the buffer
return nil;
}
- (NSData *)AES256DecryptWithKey:(NSString *)key andIV:(const void*)iv
{
// 'key' should be 32 bytes for AES256, will be null-padded otherwise
char keyPtr[kCCKeySizeAES256+1]; // room for terminator (unused)
bzero( keyPtr, sizeof( keyPtr ) ); // fill with zeroes (for padding)
// fetch key data
[key getCString:keyPtr maxLength:sizeof( keyPtr ) encoding:NSUTF8StringEncoding];
NSUInteger dataLength = [self length];
//See the doc: For block ciphers, the output size will always be less than or
//equal to the input size plus the size of one block.
//That's why we need to add the size of one block here
size_t bufferSize = dataLength + kCCBlockSizeAES128;
void *buffer = malloc( bufferSize );
size_t numBytesDecrypted = 0;
CCCryptorStatus cryptStatus = CCCrypt( kCCDecrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding,
keyPtr, kCCKeySizeAES256,
iv /* initialization vector (optional) */,
[self bytes], dataLength, /* input */
buffer, bufferSize, /* output */
&numBytesDecrypted );
if( cryptStatus == kCCSuccess )
{
//the returned NSData takes ownership of the buffer and will free it on deallocation
return [NSData dataWithBytesNoCopy:buffer length:numBytesDecrypted];
}
free( buffer ); //free the buffer
return nil;
}
The above code was borrowed from this SO's answer
Now following is part of the code I used in one of my projects. Mind that this is functions are part of an object and I didn't post all the code, just the relevant.
/**
* Pads the data using PKCS7 padding scheme, as described in RFC 5652.
*
* We do not want to rely on Mcrypt's zero-padding, because it differs from
* OpenSSL's PKCS7 padding.
*
* Note: $data is passed by reference.
*
* @param string &$data
*/
static public function pkcs7Pad(&$data)
{
$blockSize = mcrypt_get_block_size(MCRYPT_RIJNDAEL_128, MCRYPT_MODE_CBC);
$padding = $blockSize - (strlen($data) % $blockSize);
$data .= str_repeat(chr($padding), $padding);
}
/**
* Removes the (PKCS7) padding bytes from $data.
*
* Note: $data is passed by reference.
*
* @param string &$data
*/
static public function pkcs7Strip(&$data)
{
$paddingByte = substr($data, -1);
$paddingLen = ord($paddingByte);
$dataLen = strlen($data) - $paddingLen;
// Simple sanity check to make sure we have correct padding bytes. If padding
// is not correct, we simply set $data to false. At this point, there
// should be no need to worry about leaking side-channels.
if (!isset($data[15]) || $paddingLen < 1 || $paddingLen > mcrypt_get_block_size(MCRYPT_RIJNDAEL_128, MCRYPT_MODE_CBC) )
{
//$data = false;
}
else if (substr($data, $dataLen) === str_repeat($paddingByte, $paddingLen))
{
// Padding is correct, strip it off.
$data = substr($data, 0, $dataLen);
}
else
{
//$data = false;
}
}
public static function encrypt($dataString, $aesCipherKey, $iv = null, $returnBase64Encoded = false){
// ensure source file exist
if (!$dataString || empty($dataString))
return null;
try{
// ===========
// Ciphering
$ciphered_data = null;
//Make sure padding is pkcs7 based
self::pkcs7Pad($dataString);
//Encrypt data with AES
$ciphered_data = @mcrypt_encrypt(MCRYPT_RIJNDAEL_128, $aesCipherKey, $dataString, MCRYPT_MODE_CBC, $iv);
return ( $returnBase64Encoded ? base64_encode( $ciphered_data ) : $ciphered_data );
}
catch(Exception $ex){
return null;
}
}
public static function decrypt($dataString, $aesCipherKey, $iv = null, $returnBase64Encoded = false){
// ensure source file exist
if (!$dataString || empty($dataString))
return null;
try{
// ===========
// Ciphering
$ciphered_data = null;
//Decrypt data with AES
$ciphered_data = @mcrypt_decrypt(MCRYPT_RIJNDAEL_128, $aesCipherKey, $dataString, MCRYPT_MODE_CBC, $iv);
//Ensure no pkcs7 padding is left overs
self::pkcs7Strip($ciphered_data);
return ( $returnBase64Encoded ? base64_encode( $ciphered_data ) : $ciphered_data );
}
catch(Exception $ex){
return null;
}
}
EDIT: Remember that you will need to comply to U.S. export laws for software that contains encryption.