Non-commutative sympify (or simplify)

前端 未结 2 1505
故里飘歌
故里飘歌 2021-02-06 15:40

I would like to be able to simplify mathematical expressions from a string in Python. There are several \"commutative\" ways of doing it. Is there a non-commutative function f

相关标签:
2条回答
  • 2021-02-06 16:12

    You still need to tell Sympy that there are constraints on the symbols x and y. To do this, still create Symbol instances for them, and then just pass those parameters in as locals to sympify:

    In [120]: x = sympy.Symbol('x', commutative=False)
    
    In [121]: y = sympy.Symbol('y', commutative=False)
    
    In [122]: sympy.sympify('3*x*y - y*x - 2*x*y', locals={'x':x, 'y':y})
    Out[122]: x*y - y*x
    

    To do it programmatically, SymPy provides some nice parsing tools for extracting symbols from a string expression. The key idea is that you have to suppress evaluation since normal evaluation will make commutativity assumptions that ruin your ability to extract what you need:

    In [155]: s = sympy.parsing.sympy_parser.parse_expr('3*x*y - y*x - 2*x*y', evaluate=False)
    
    In [156]: s.atoms(sympy.Symbol)
    Out[156]: {x, y}
    

    It does not appear that there is a direct way to mutate the assumption state of an already-created Symbol, which is unfortunate. But you can iterate through these symbols, and make a new collection of symbols with the same names and the non-commutative assumption, and use that for locals in sympify.

    def non_commutative_sympify(expr_string):
        parsed_expr = sympy.parsing.sympy_parser.parse_expr(
            expr_string, 
            evaluate=False
        )
    
        new_locals = {sym.name:sympy.Symbol(sym.name, commutative=False)
                      for sym in parsed_expr.atoms(sympy.Symbol)}
    
        return sympy.sympify(expr_string, locals=new_locals)
    

    Which gives, e.g.:

    In [184]: non_commutative_sympify('3*x*y - y*x - 2*x*y')
    Out[184]: x*y - y*x
    
    In [185]: non_commutative_sympify('x*y*z - y*z*x - 2*x*y*z + z*y*x')
    Out[185]: -x*y*z - y*z*x + z*y*x
    
    0 讨论(0)
  • 2021-02-06 16:17

    Here is my solution. For the algorithm please see either my above comments or the comments in the code. I will appreciate if someone comes with a more elegant piece of code.

    """
    Created on Sat Aug 22 22:15:16 2015
    
    @author: GnacikM
    """
    
    from sympy import *
    import re
    import string
    
    """
    names for variables in a list
    """
    alpha = list(string.ascii_lowercase)
    Alpha = list(string.ascii_uppercase)
    
    """
    Creating symbols
    """
    def symbol_commutativity(my_symbol, name, status):
        my_symbol = Symbol(str(name), commutative=status)
        return my_symbol
    
    symbols_lower = []
    for item in alpha:
        symbols_lower.append(symbol_commutativity(item, item, False))
    
    symbols_upper = []
    for item in Alpha:
        symbols_upper.append(symbol_commutativity(item, item, False))
    
    """
    Transforming an infix expression to Reverse Polish Notation
    http://andreinc.net/2010/10/05/converting-infix-to-rpn-shunting-yard-algorithm/
    """
    #Associativity constants for operators
    LEFT_ASSOC = 0
    RIGHT_ASSOC = 1
    
    #Supported operators
    OPERATORS = {
        '+' : (0, LEFT_ASSOC),
        '-' : (0, LEFT_ASSOC),
        '*' : (5, LEFT_ASSOC),
        '/' : (5, LEFT_ASSOC),
        '%' : (5, LEFT_ASSOC),
        '^' : (10, RIGHT_ASSOC)
    }
    
    #Test if a certain token is operator
    def isOperator(token):
        return token in OPERATORS.keys()
    
    #Test the associativity type of a certain token
    def isAssociative(token, assoc):
        if not isOperator(token):
            raise ValueError('Invalid token: %s' % token)
        return OPERATORS[token][1] == assoc
    
    #Compare the precedence of two tokens
    def cmpPrecedence(token1, token2):
        if not isOperator(token1) or not isOperator(token2):
            raise ValueError('Invalid tokens: %s %s' % (token1, token2))
        return OPERATORS[token1][0] - OPERATORS[token2][0]   
    
    
    #Transforms an infix expression to RPN
    def infixToRPN(tokens):
        out = []
        stack = []
        #For all the input tokens [S1] read the next token [S2]
        for token in tokens:
            if isOperator(token):
                # If token is an operator (x) [S3]
                while len(stack) != 0 and isOperator(stack[-1]):
                    # [S4]
                    if (isAssociative(token, LEFT_ASSOC) and cmpPrecedence(token, stack[-1]) <= 0) or (isAssociative(token, RIGHT_ASSOC) and cmpPrecedence(token, stack[-1]) < 0):
                        # [S5] [S6]
                        out.append(stack.pop())
                        continue
                    break
                # [S7]
                stack.append(token)
            elif token == '(':
                stack.append(token) # [S8]
            elif token == ')':
                # [S9]
                while len(stack) != 0 and stack[-1] != '(':
                    out.append(stack.pop()) # [S10]
                stack.pop() # [S11]
            else:
                out.append(token) # [S12]
        while len(stack) != 0:
            # [S13]
            out.append(stack.pop())
        return out
    
    """
    Evaluating an expression in Reverse Polish Notation, an input is a list
    http://danishmujeeb.com/blog/2014/12/parsing-reverse-polish-notation-in-python
    """
    
    def parse_rpn(expression):
    
      stack = []
    
      for val in expression:
          if val in ['-', '+', '*', '/', '^']:
              op1 = stack.pop()
              if len(stack)==0:
                  op2 = 0
              else:
                  op2 = stack.pop()
    
              if val=='-': 
                  result = op2 - op1
              elif val=='+': 
                  result = op2 + op1
              elif val=='*': 
                  result = op2 * op1
              elif val=='/': 
                  result = op2 / op1
              elif val=='^':
                  result =  op2 ** op1
              stack.append(result)
          else:
              stack.append(val)
      return stack
    
    """
    Definition of my non-commutative sympify
    """
    def nc_sympify(string):
        expression_list = re.findall(r"(-\number|\b\w*[\.]?\w+\b|[\(\)\+\*\-\/^])", string)
    
        """ Modifying expression_list to fix the issue with negative numbers """
        t = len(expression_list) 
        i=0
        while i<t:
            if len(expression_list[i])>1 and expression_list[i][0]=='-' and expression_list[i-1]!='(':
                new_list1 = expression_list[:i]
                if i<len(expression_list):
                    new_list2 = expression_list[i+1:]
                else:
                    new_list2 = []
                new_entry1 = expression_list[i][0]
                new_entry2 = expression_list[i][1:]
                expression_list[:] = new_list1 +[new_entry1] +[new_entry2]+new_list2 
                t = len(expression_list)
            i+=1
        """End of this modification """
    
        for i in xrange(len(expression_list)):
            if expression_list[i] in alpha:
                for j in range(len(alpha)):
                    if expression_list[i] == alpha[j]:
                        expression_list[i] = symbols_lower[j]
            elif expression_list[i]  in Alpha:
                for k in xrange(len(Alpha)):
                    if expression_list[i]  == Alpha[k]:
                        expression_list[i] = symbols_upper[k]
            elif expression_list[i]  not in ['-', '+', '*', '/', '(', ')', '^', ' ']:
                expression_list[i]  = float(expression_list[i] )
                if i>0 and expression_list[i].is_integer()==True and expression_list[i-1]!='/':
                    expression_list[i]=int(expression_list[i])
                elif i==0 and expression_list[i].is_integer()==True:
                    expression_list[i]=int(expression_list[i])
    
        output = infixToRPN(expression_list)
    
        return parse_rpn(output)[0]
    
    
    print nc_sympify('3*x*y - y*x - 2*x*y')
    
    0 讨论(0)
提交回复
热议问题