If we have concrete range of max..min value it is quite easy to normalize it to 0..1 float values, but if we don\'t have concrete limits? Is it possible to build universal funct
With nearly all programming of floating point numbers, the values are distributed logarithmically. Therefore first take the log()
of the value to begin mapping paying attention to edge case concerns.
double map(double x, double x0, double x1, double y0, double y1) {
return (x - x0) / (x1 - x0) * (y1 - y0) + y0;
}
double noramlize01(double x) {
assert(x == x); // fail is x is NaN
// These values only need to be calculated once.
double logxmin = log(DBL_TRUE_MIN); // e.g. -323.306...
double logxmax = log(DBL_MAX); // e.g. 308.254...
double y;
if (x < -DBL_MAX) y = 0.0;
else if (x < 0.0) {
y = map(log(-x), logxmax, logxmin, nextafter(0.0,1.0), nextafter(0.5,0.0));
} else if (x == 0.0) {
y = 0.5;
} else if (x <= DBL_MAX) {
y = map(log(x), logxmin, logxmax, nextafter(0.5,1.0), nextafter(1.0,0.5));
} else {
y = 1.0;
}
return y;
}
double round_n(double x, unsigned n) {
return x * n;
}
void testr(double x) {
printf("% 20e %#.17g\n", x, noramlize01(x));
//printf("% 20e %.17f\n", -x, noramlize01(-x));
}
int main(void) {
double t[] = {0.0, DBL_TRUE_MIN, DBL_MIN, 1/M_PI, 1/M_E,
1.0, M_E, M_PI, DBL_MAX, INFINITY};
for (unsigned i = sizeof t/sizeof t[0]; i > 0; i--) {
testr(-t[i-1]);
}
for (unsigned i = 0; i < sizeof t/sizeof t[0]; i++) {
testr(t[i]);
}
}
Sample output
-inf 0.0000000000000000
-1.797693e+308 4.9406564584124654e-324
-3.141593e+00 0.24364835649917244
-2.718282e+00 0.24369811843639441
-1.000000e+00 0.24404194470924687
-3.678794e-01 0.24438577098209935
-3.183099e-01 0.24443553291932130
-2.225074e-308 0.48760724499523350
-4.940656e-324 0.49999999999999994
-0.000000e+00 0.50000000000000000
0.000000e+00 0.50000000000000000
4.940656e-324 0.50000000000000011
2.225074e-308 0.51239275500476655
3.183099e-01 0.75556446708067870
3.678794e-01 0.75561422901790065
1.000000e+00 0.75595805529075311
2.718282e+00 0.75630188156360556
3.141593e+00 0.75635164350082751
1.797693e+308 0.99999999999999989
inf 1.0000000000000000
If you don't mind bit-dibbling and are confident that code uses IEEE binary 64-bit floating point, some fast code with only a few FP math operations
// If double is 64-bit and same endian as integer
double noramlize01(double x) {
assert(x == x); // fail if x is NaN
union {
double d;
int64_t i64;
uint64_t u64;
} u = {x};
double d;
if (u.i64 < 0) {
u.u64 -= 0x8000000000000000;
d = (double) -u.i64;
} else {
d = (double) u.i64;
}
return d/(+2.0 * 0x7ff0000000000000) + 0.5;
}
// Similar test code as this answer
-inf 0.0000000000000000
-1.797693e+308 0.0000000000000000
-3.141593e+00 0.24973844740430023
-2.718282e+00 0.24979014633262589
-1.000000e+00 0.25012212994626282
-2.225074e-308 0.49975574010747437
-4.940656e-324 0.50000000000000000
-0.000000e+00 0.50000000000000000
0.000000e+00 0.50000000000000000
4.940656e-324 0.50000000000000000
2.225074e-308 0.50024425989252563
1.000000e+00 0.74987787005373718
2.718282e+00 0.75020985366737414
3.141593e+00 0.75026155259569971
1.797693e+308 1.0000000000000000
inf 1.0000000000000000
There are many ways to do this. I'll leave out mapping -inf
and +inf
, which can be done with conditional statements.
exp(x) / (1 + exp(x))
or the equivalent 1 / (1 + exp(-x))
where exp
is the exponential function. This is a logistic function.atan(x) / pi + 1 / 2
(tanh(x) + 1) / 2
(1 + x / sqrt(1 + x*x)) / 2
(1 + x / (1 + abs(x)) / 2
(erf(x) + 1) / 2
You have probably noticed that most of these take a mapping to (-1, 1) and change it to (0, 1). The former is usually easier. Here is a graph of these functions:
In my Python 3.5.2, the fastest was (1 + x / (1 + abs(x)) * 0.5
.