Specializing bind for monads over special typeclasses in Haskell

前端 未结 3 1740
陌清茗
陌清茗 2021-02-06 14:13

In the second last chapter For a Few Monads More of the very nice tutorial \"Learn You a Haskell for a Great Good\" the author defines the following monad:

impor         


        
相关标签:
3条回答
  • 2021-02-06 14:40

    This is called a "restricted monad" and you define it like this:

    {-# LANGUAGE ConstraintKinds, TypeFamilies, KindSignatures, FlexibleContexts, UndecidableInstances #-}
    module Control.Restricted (RFunctor(..),
                               RApplicative(..),
                               RMonad(..),
                               RMonadPlus(..),) where
    import Prelude hiding (Functor(..), Monad(..))
    import Data.Foldable (Foldable(foldMap))
    import GHC.Exts (Constraint)
    
    class RFunctor f where
        type Restriction f a :: Constraint
        fmap :: (Restriction f a, Restriction f b) => (a -> b) -> f a -> f b
    
    class (RFunctor f) => RApplicative f where
        pure :: (Restriction f a) => a -> f a
        (<*>) :: (Restriction f a, Restriction f b) => f (a -> b) -> f a -> f b
    
    class (RApplicative m) => RMonad m where
        (>>=) :: (Restriction m a, Restriction m b) => m a -> (a -> m b) -> m b
        (>>) :: (Restriction m a, Restriction m b)  => m a -> m b ->  m b
        a >> b = a >>= \_ -> b
        join :: (Restriction m a, Restriction m (m a)) => m (m a) -> m a
        join a = a >>= id
        fail :: (Restriction m a) => String -> m a
        fail = error
    
    return :: (RMonad m, Restriction m a) => a -> m a
    return = pure
    
    class (RMonad m) => RMonadPlus m where
        mplus :: (Restriction m a) => m a -> m a -> m a
        mzero :: (Restriction m a) => m a
        msum :: (Restriction m a, Foldable t) => t (m a) -> m a
        msum t = getRMonadPlusMonoid $ foldMap RMonadPlusMonoid t
    
    data RMonadPlusMonoid m a = RMonadPlusMonoid { getRMonadPlusMonoid :: m a }
    
    instance (RMonadPlus m, Restriction m a) => Monoid (RMonadPlusMonoid m a) where
        mappend (RMonadPlusMonoid x) (RMonadPlusMonoid y) = RMonadPlusMonoid $ mplus x y
        mempty = RMonadPlusMonoid mzero
        mconcat t = RMonadPlusMonoid . msum $ map getRMonadPlusMonoid t
    
    guard :: (RMonadPlus m, Restriction m a) => Bool -> m ()
    guard p = if p then return () else mzero
    

    To use a restricted monad, you need to begin your file like this:

    {-# LANGUAGE ConstraintKinds, TypeFamilies, RebindableSyntax #-}
    module {- module line -} where
    import Prelude hiding (Functor(..), Monad(..))
    import Control.Restricted
    
    0 讨论(0)
  • 2021-02-06 14:49

    Here another possibility based on Generalized Algebraic Datatypes using a technique by Ganesh Sittampalam:

    {-# LANGUAGE GADTs #-}
    
    import Control.Arrow (first, second)
    import Data.Ratio
    import Data.List (foldl')
    
    -- monads over typeclass Eq
    class EqMonad m where
      eqReturn :: Eq a => a -> m a
      eqBind :: (Eq a, Eq b) => m a -> (a -> m b) -> m b
      eqFail :: Eq a => String -> m a
      eqFail = error
    
    data AsMonad m a where
      Embed :: (EqMonad m, Eq a) => m a -> AsMonad m a
      Return :: EqMonad m => a -> AsMonad m a
      Bind :: EqMonad m => AsMonad m a -> (a -> AsMonad m b) -> AsMonad m b
    
    instance EqMonad m => Monad (AsMonad m) where
      return = Return
      (>>=) = Bind
      fail = error
    
    unEmbed :: Eq a => AsMonad m a -> m a
    unEmbed (Embed m) = m
    unEmbed (Return v) = eqReturn v
    unEmbed (Bind (Embed m) f) = m `eqBind` (unEmbed . f)
    unEmbed (Bind (Return v) f) = unEmbed (f v)
    unEmbed (Bind (Bind m f) g) = unEmbed (Bind m (\x -> Bind (f x) g))
    
    -- the example monad from "Learn you a Haskell for a Great good"
    newtype Prob a = Prob { getProb :: [(a, Rational)] }
      deriving Show
    
    instance Functor Prob where
      fmap f (Prob as) = Prob $ map (first f) as
    
    flatten :: Prob (Prob a) -> Prob a
    flatten (Prob xs) = Prob $ concat $ map multAll xs
      where multAll (Prob innerxs, p) = map (\(x, r) -> (x, p*r)) innerxs
    
    compress :: Eq a => Prob a -> Prob a
    compress (Prob as) = Prob $ foldl' f [] as
      where f [] a = [a]
            f ((b, q):bs) (a, p) | a == b    = (a, p+q):bs
                                 | otherwise = (b, q):f bs (a, p)
    
    instance Eq a => Eq (Prob a) where
      (==) (Prob as) (Prob bs) = all (`elem` bs) as
    
    instance EqMonad Prob where
      eqReturn x = Prob [(x, 1%1)]
      m `eqBind` f = compress $ flatten (fmap f m)
      eqFail _ = Prob []
    
    newtype Probability a = Probability { getProbability :: AsMonad Prob a }
    
    instance Monad Probability where
      return = Probability . Return
      a >>= f = Probability $ Bind (getProbability a) (getProbability . f)
      fail = error
    
    instance (Show a, Eq a) => Show (Probability a) where
      show = show . getProb . unEmbed . getProbability
    
    -- Example flipping four coins (now as 0/1)
    prob :: Eq a => [(a, Rational)] -> Probability a
    prob = Probability . Embed . Prob
    
    coin :: Probability Int
    coin = prob [(0, 1%2), (1, 1%2)]
    
    loadedCoin :: Probability Int
    loadedCoin = prob [(0, 1%10), (1, 9%10)]
    
    flipFour :: Probability Int
    flipFour = do
      a <- coin
      b <- coin
      c <- coin
      d <- loadedCoin
      return (a+b+c+d)
    
    0 讨论(0)
  • 2021-02-06 14:50

    Thanks to Ptharien's Flame's answer (please upvote it!) I managed to adapt the example monad from "Learn You a Haskell for a Great Good" running. As I had to google some details (being a Haskell-newbie) here is what I did at the end (the example flipThree in "Learn..." gives now [(True,9 % 40), (False,31 % 40)]):

    file Control/Restricted.hs (to shorten it I removed RApplicative, RMonadPlus etc):

    {-# LANGUAGE ConstraintKinds, TypeFamilies, KindSignatures, FlexibleContexts, UndecidableInstances #-}
    module Control.Restricted (RFunctor(..),
                               RMonad(..)) where
    import Prelude hiding (Functor(..), Monad(..))
    import Data.Foldable (Foldable(foldMap))
    import Data.Monoid
    import GHC.Exts (Constraint)
    
    class RFunctor f where
      type Restriction f a :: Constraint
      fmap :: (Restriction f a, Restriction f b) => (a -> b) -> f a -> f b
    
    class (RFunctor m) => RMonad m where
      return :: (Restriction m a) => a -> m a
      (>>=) :: (Restriction m a, Restriction m b) => m a -> (a -> m b) -> m b
      (>>) :: (Restriction m a, Restriction m b)  => m a -> m b -> m b
      a >> b = a >>= \_ -> b
      join :: (Restriction m a, Restriction m (m a)) => m (m a) -> m a
      join a = a >>= id
      fail :: (Restriction m a) => String -> m a
      fail = error
    

    file Prob.hs:

    {-# LANGUAGE ConstraintKinds, TypeFamilies, RebindableSyntax, FlexibleContexts #-}
    import Data.Ratio
    import Control.Restricted
    import Prelude hiding (Functor(..), Monad(..))
    import Control.Arrow (first, second)
    import Data.List (all)
    
    newtype Prob a = Prob { getProb :: [(a, Rational)] } deriving Show
    
    instance RFunctor Prob where
      type Restriction Prob a = (Eq a)
      fmap f (Prob as) = Prob $ map (first f) as
    
    flatten :: Prob (Prob a) -> Prob a
    flatten (Prob xs) = Prob $ concat $ map multAll xs
      where multAll (Prob innerxs, p) = map (\(x, r) -> (x, p*r)) innerxs
    
    compress :: Eq a => Prob a -> Prob a
    compress (Prob as) = Prob $ foldr f [] as
      where f a [] = [a]
            f (a, p) ((b, q):bs) | a == b    = (a, p+q):bs
                                 | otherwise = (b, q):f (a, p) bs
    
    instance Eq a => Eq (Prob a) where
      (==) (Prob as) (Prob bs) = all (`elem` bs) as
    
    instance RMonad Prob where
      return x = Prob [(x, 1%1)]
      m >>= f = compress $ flatten (fmap f m)
      fail _ = Prob []
    
    0 讨论(0)
提交回复
热议问题