I see that the pandas library has a Describe by
function which returns some useful statistics. However, is there a way to add additional rows to the output such as
The answer from piRSquared makes the most sense to me, but I get a deprecation warning about reindex_axis in Python 3.5. This works for me:
stats = data.describe()
stats.loc['IQR'] = stats.loc['75%'] - stats.loc['25%'] # appending interquartile range instead of recalculating it
stats = stats.append(data.reindex(stats.columns, axis=1).agg(['skew', 'mad', 'kurt']))
Try this:
df.describe()
num1 num2
count 3.0 3.0
mean 2.0 5.0
std 1.0 1.0
min 1.0 4.0
25% 1.5 4.5
50% 2.0 5.0
75% 2.5 5.5
max 3.0 6.0
Build a second DataFrame.
pd.DataFrame(df.mad() , columns = ["Mad"] ).T
num1 num2
Mad 0.666667 0.666667
Join the two DataFrames.
pd.concat([df.describe(),pd.DataFrame(df.mad() , columns = ["Mad"] ).T ])
num1 num2
count 3.000000 3.000000
mean 2.000000 5.000000
std 1.000000 1.000000
min 1.000000 4.000000
25% 1.500000 4.500000
50% 2.000000 5.000000
75% 2.500000 5.500000
max 3.000000 6.000000
Mad 0.666667 0.666667
the default describe
looks like this:
np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(100, 5), columns=list('ABCDE'))
df.describe()
A B C D E
count 100.000000 100.000000 100.000000 100.000000 100.000000
mean 0.495871 0.472939 0.455570 0.503899 0.451341
std 0.303589 0.291968 0.294984 0.269936 0.284666
min 0.006453 0.001559 0.001068 0.015311 0.009526
25% 0.239379 0.219141 0.196251 0.294371 0.202956
50% 0.529596 0.456548 0.376558 0.532002 0.432936
75% 0.759452 0.739666 0.665563 0.730702 0.686793
max 0.999799 0.994510 0.997271 0.981551 0.979221
Updated for pandas 0.20
I'd make my own describe
like below. It should be obvious how to add more.
def describe(df, stats):
d = df.describe()
return d.append(df.reindex_axis(d.columns, 1).agg(stats))
describe(df, ['skew', 'mad', 'kurt'])
A B C D E
count 100.000000 100.000000 100.000000 100.000000 100.000000
mean 0.495871 0.472939 0.455570 0.503899 0.451341
std 0.303589 0.291968 0.294984 0.269936 0.284666
min 0.006453 0.001559 0.001068 0.015311 0.009526
25% 0.239379 0.219141 0.196251 0.294371 0.202956
50% 0.529596 0.456548 0.376558 0.532002 0.432936
75% 0.759452 0.739666 0.665563 0.730702 0.686793
max 0.999799 0.994510 0.997271 0.981551 0.979221
skew -0.014942 0.048054 0.247244 -0.125151 0.066156
mad 0.267730 0.249968 0.254351 0.228558 0.242874
kurt -1.323469 -1.223123 -1.095713 -1.083420 -1.148642
Old Answer
def describe(df):
return pd.concat([df.describe().T,
df.mad().rename('mad'),
df.skew().rename('skew'),
df.kurt().rename('kurt'),
], axis=1).T
describe(df)
A B C D E
count 100.000000 100.000000 100.000000 100.000000 100.000000
mean 0.495871 0.472939 0.455570 0.503899 0.451341
std 0.303589 0.291968 0.294984 0.269936 0.284666
min 0.006453 0.001559 0.001068 0.015311 0.009526
25% 0.239379 0.219141 0.196251 0.294371 0.202956
50% 0.529596 0.456548 0.376558 0.532002 0.432936
75% 0.759452 0.739666 0.665563 0.730702 0.686793
max 0.999799 0.994510 0.997271 0.981551 0.979221
mad 0.267730 0.249968 0.254351 0.228558 0.242874
skew -0.014942 0.048054 0.247244 -0.125151 0.066156
kurt -1.323469 -1.223123 -1.095713 -1.083420 -1.148642