Panel data regression: Robust standard errors

前端 未结 2 575
醉梦人生
醉梦人生 2021-02-06 10:07

my problem is this: I get NA where I should get some values in the computation of robust standard errors.

I am trying to do a fixed effect panel regression

相关标签:
2条回答
  • 2021-02-06 10:49

    After some time playing around, it works for me and gives me:

                             Estimate  Std. Error t value  Pr(>|t|)    
    (Intercept)            4.5099e-16  5.2381e-16  0.8610  0.389254    
    C.MCAP_SEC            -5.9769e-07  1.2677e-07 -4.7149 2.425e-06 ***
    C.Impact_change       -5.3908e-04  7.5601e-05 -7.1306 1.014e-12 ***
    C.Mom                  3.7560e-04  3.3378e-03  0.1125  0.910406    
    C.BM                  -1.6438e-04  1.7368e-05 -9.4645 < 2.2e-16 ***
    C.PD                   6.2153e-02  3.8766e-02  1.6033  0.108885    
    C.CashGen             -2.7876e-04  1.4031e-02 -0.0199  0.984149    
    C.NITA                -8.1792e-02  3.2153e-02 -2.5438  0.010969 *  
    C.PE                  -6.6170e-06  4.0138e-06 -1.6485  0.099248 .  
    C.PEdummy              1.3143e-02  4.8864e-03  2.6897  0.007154 ** 
    factor(DS_CODE)130324 -5.2497e-16  5.2683e-16 -0.9965  0.319028    
    factor(DS_CODE)130409 -4.0276e-16  5.2384e-16 -0.7689  0.441986    
    factor(DS_CODE)130775 -4.4113e-16  5.2424e-16 -0.8415  0.400089  
    ...
    

    This leaves us with the question why it doesn't for you. I guess it has something to do with the format of your data. Is everything numeric? I converted the column classes and it looks like that for me:

    str(dat)
    'data.frame':   48251 obs. of  12 variables:
     $ DS_CODE      : chr  "902172" "902172" "902172" "902172" ...
     $ DNEW         : num  2e+05 2e+05 2e+05 2e+05 2e+05 ...
     $ MCAP_SEC     : num  78122 71421 81907 80010 82462 ...
     $ NITA         : num  0.135 0.135 0.135 0.135 0.135 ...
     $ CashGen      : num  0.198 0.198 0.198 0.198 0.198 ...
     $ BM           : num  0.1074 0.1108 0.097 0.0968 0.0899 ...
     $ PE           : num  57 55.3 63.1 63.2 68 ...
     $ PEdummy      : num  0 0 0 0 0 0 0 0 0 0 ...
     $ L1.retE1M    : num  -0.72492 0.13177 0.00122 0.07214 -0.07332 ...
     $ Mom          : num  0 0 0 0 0 ...
     $ PD           : num  5.41e-54 1.51e-66 3.16e-80 2.87e-79 4.39e-89 ...
     $ Impact_change: num  0 -10.59 -10.43 0.7 -6.97 ...
    

    What does str(data) return for you?

    0 讨论(0)
  • 2021-02-06 10:54

    The plm package can estimate clustered SEs for panel regressions. The original data is no longer available, so here's an example using dummy data.

    require(foreign)
    require(plm)
    require(lmtest)
    test <- read.dta("http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.dta")
    
    fpm <- plm(y ~ x, test, model='pooling', index=c('firmid', 'year'))
    
    ##Arellano clustered by *group* SEs
    > coeftest(fpm, vcov=function(x) vcovHC(x, cluster="group", type="HC0"))
    
    t test of coefficients:
    
                Estimate Std. Error t value Pr(>|t|)    
    (Intercept) 0.029680   0.066939  0.4434   0.6575    
    x           1.034833   0.050540 20.4755   <2e-16 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    

    If you're using lm models (instead of plm), then the multiwayvcov package may help.

    library("lmtest")
    library("multiwayvcov")
    
    data(petersen)
    m1 <- lm(y ~ x, data = petersen)
    
    > coeftest(m1, vcov=function(x) cluster.vcov(x, petersen[ , c("firmid")], 
       df_correction=FALSE))
    
    t test of coefficients:
    
                Estimate Std. Error t value Pr(>|t|)    
    (Intercept) 0.029680   0.066939  0.4434   0.6575    
    x           1.034833   0.050540 20.4755   <2e-16 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    

    For more details see:

    • Fama-MacBeth and Cluster-Robust (by Firm and Time) Standard Errors in R.

    See also:

    • Double clustered standard errors for panel data
    0 讨论(0)
提交回复
热议问题