I want to create an adjacency matrix for a graph. Since I read it is not safe to use arrays of the form matrix[x][y]
because they don\'t check for range, I deci
The standard vector does NOT do range checking by default.
i.e. The operator[] does not do a range check.
The method at() is similar to [] but does do a range check.
It will throw an exception on out of range.
std::vector::at()
std::vector::operator[]()
Other notes:
Why a vector<Pointers> ?
You can quite easily have a vector<Object>. Now there is no need to worry about memory management (i.e. leaks).
std::vector<std::vector<bool> > m;
Note: vector<bool> is overloaded and not very efficient (i.e. this structure was optimized for size not speed) (It is something that is now recognized as probably a mistake by the standards committee).
If you know the size of the matrix at compile time you could use std::bitset?
std::vector<std::bitset<5> > m;
or if it is runtime defined use boost::dynamic_bitset
std::vector<boost::dynamic_bitset> m;
All of the above will allow you to do:
m[6][3] = true;
In addition to all the answers that have been posted so far, you might do well to check out the C++ FAQ Lite. Questions 13.10 - 13.12 and 16.16 - 16.19 cover several topics related to rolling your own matrix class. You'll see a couple of different ways to store the data and suggestions on how to best write the subscript operators.
Also, if your graph is sufficiently sparse, you may not need a matrix at all. You could use std::multimap
to map each vertex to those it connects.
Mind you std::vector
doesn't do range checking either.
Note that also you can use boost.ublas for matrix creation and manipulation and also boost.graph to represent and manipulate graphs in a number of ways, as well as using algorithms on them, etc.
Edit: Anyway, doing a range-check version of a vector for your purposes is not a hard thing:
template <typename T>
class BoundsMatrix
{
std::vector<T> inner_;
unsigned int dimx_, dimy_;
public:
BoundsMatrix (unsigned int dimx, unsigned int dimy)
: dimx_ (dimx), dimy_ (dimy)
{
inner_.resize (dimx_*dimy_);
}
T& operator()(unsigned int x, unsigned int y)
{
if (x >= dimx_ || y>= dimy_)
throw std::out_of_range("matrix indices out of range"); // ouch
return inner_[dimx_*y + x];
}
};
Note that you would also need to add the const version of the operators, and/or iterators, and the strange use of exceptions, but you get the idea.