Android: How to shift pitch of output sound (realtime)

后端 未结 3 1349
予麋鹿
予麋鹿 2021-02-06 08:12

I\'m new in Android development. I\'m looking for any method that applies pitch shifting to output sound (in real-time). But I couldn\'t find any point to start

相关标签:
3条回答
  • 2021-02-06 08:14

    HOME URL: http://www.dspdimension.com

    public class AudioPitch{
    
    //region Private Static Memebers
    private static int MAX_FRAME_LENGTH = 8192;
    private static double M_PI = 3.14159265358979323846;
    private static float[] gInFIFO = new float[MAX_FRAME_LENGTH];
    private static float[] gOutFIFO = new float[MAX_FRAME_LENGTH];
    private static float[] gFFTworksp = new float[2 * MAX_FRAME_LENGTH];
    private static float[] gLastPhase = new float[MAX_FRAME_LENGTH / 2 + 1];
    private static float[] gSumPhase = new float[MAX_FRAME_LENGTH / 2 + 1];
    private static float[] gOutputAccum = new float[2 * MAX_FRAME_LENGTH];
    private static float[] gAnaFreq = new float[MAX_FRAME_LENGTH];
    private static float[] gAnaMagn = new float[MAX_FRAME_LENGTH];
    private static float[] gSynFreq = new float[MAX_FRAME_LENGTH];
    private static float[] gSynMagn = new float[MAX_FRAME_LENGTH];
    private static long gRover;
    //endregion
    
    
    
    public static void PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize/*(long)2048*/, long osamp/*(long)10*/, float sampleRate, float[] indata)            
    {
    
        double magn, phase, tmp, window, real, imag;
        double freqPerBin, expct;
        long i, k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
    
        float[] outdata = indata;
        /* set up some handy variables */
        fftFrameSize2 = fftFrameSize / 2;
        stepSize = fftFrameSize / osamp;
        freqPerBin = sampleRate / (double)fftFrameSize;
        expct = 2.0 * M_PI * (double)stepSize / (double)fftFrameSize;
        inFifoLatency = fftFrameSize - stepSize;
        if (gRover == 0) gRover = inFifoLatency;
    
    
        /* main processing loop */
        for (i = 0; i < numSampsToProcess; i++)
        {
            /* As long as we have not yet collected enough data just read in */
            gInFIFO[(int) gRover] = indata[(int) i];
            outdata[(int) i] = gOutFIFO[(int) (gRover - inFifoLatency)];
            gRover++;
    
            /* now we have enough data for processing */
            if (gRover >= fftFrameSize)
            {
                gRover = inFifoLatency;
    
                /* do windowing and re,im interleave */
                for (k = 0; k < fftFrameSize; k++)
                {
                    window = -.5 * Math.cos(2.0 * M_PI * (double)k / (double)fftFrameSize) + .5;
                    gFFTworksp[(int) (2 * k)] = (float)(gInFIFO[(int) k] * window);
                    gFFTworksp[(int) (2 * k + 1)] = 0.0F;
                }
    
    
                /* ***************** ANALYSIS ******************* */
                /* do transform */
                ShortTimeFourierTransform(gFFTworksp, fftFrameSize, -1);
    
                /* this is the analysis step */
                for (k = 0; k <= fftFrameSize2; k++)
                {
    
                    /* de-interlace FFT buffer */
                    real = gFFTworksp[(int) (2 * k)];
                    imag = gFFTworksp[(int) (2 * k + 1)];
    
                    /* compute magnitude and phase */
                    magn = 2.0 * Math.sqrt(real * real + imag * imag);
                    phase = smbAtan2(imag, real);
    
                    /* compute phase difference */
                    tmp = phase - gLastPhase[(int) k];
                    gLastPhase[(int) k] = (float)phase;
    
                    /* subtract expected phase difference */
                    tmp -= (double)k * expct;
    
                    /* map delta phase into +/- Pi interval */
                    qpd = (long)(tmp / M_PI);
                    if (qpd >= 0) qpd += qpd & 1;
                    else qpd -= qpd & 1;
                    tmp -= M_PI * (double)qpd;
    
                    /* get deviation from bin frequency from the +/- Pi interval */
                    tmp = osamp * tmp / (2.0 * M_PI);
    
                    /* compute the k-th partials' true frequency */
                    tmp = (double)k * freqPerBin + tmp * freqPerBin;
    
                    /* store magnitude and true frequency in analysis arrays */
                    gAnaMagn[(int) k] = (float)magn;
                    gAnaFreq[(int) k] = (float)tmp;
    
                }
    
                /* ***************** PROCESSING ******************* */
                /* this does the actual pitch shifting */
                for (int zero = 0; zero < fftFrameSize; zero++)
                {
                    gSynMagn[zero] = 0;
                    gSynFreq[zero] = 0;
                }
    
                for (k = 0; k <= fftFrameSize2; k++)
                {
                    index = (long)(k * pitchShift);
                    if (index <= fftFrameSize2)
                    {
                        gSynMagn[(int) index] += gAnaMagn[(int) k];
                        gSynFreq[(int) index] = gAnaFreq[(int) k] * pitchShift;
                    }
                }
    
                /* ***************** SYNTHESIS ******************* */
                /* this is the synthesis step */
                for (k = 0; k <= fftFrameSize2; k++)
                {
    
                    /* get magnitude and true frequency from synthesis arrays */
                    magn = gSynMagn[(int) k];
                    tmp = gSynFreq[(int) k];
    
                    /* subtract bin mid frequency */
                    tmp -= (double)k * freqPerBin;
    
                    /* get bin deviation from freq deviation */
                    tmp /= freqPerBin;
    
                    /* take osamp into account */
                    tmp = 2.0 * M_PI * tmp / osamp;
    
                    /* add the overlap phase advance back in */
                    tmp += (double)k * expct;
    
                    /* accumulate delta phase to get bin phase */
                    gSumPhase[(int) k] += (float)tmp;
                    phase = gSumPhase[(int) k];
    
                    /* get real and imag part and re-interleave */
                    gFFTworksp[(int) (2 * k)] = (float)(magn * Math.cos(phase));
                    gFFTworksp[(int) (2 * k + 1)] = (float)(magn * Math.sin(phase));
                }
    
                /* zero negative frequencies */
                for (k = fftFrameSize + 2; k < 2 * fftFrameSize; k++) gFFTworksp[(int) k] = 0.0F;
    
                /* do inverse transform */
                ShortTimeFourierTransform(gFFTworksp, fftFrameSize, 1);
    
                /* do windowing and add to output accumulator */
                for (k = 0; k < fftFrameSize; k++)
                {
                    window = -.5 * Math.cos(2.0 * M_PI * (double)k / (double)fftFrameSize) + .5;
                    gOutputAccum[(int) k] += (float)(2.0 * window * gFFTworksp[(int) (2 * k)] / (fftFrameSize2 * osamp));
                }
                for (k = 0; k < stepSize; k++) gOutFIFO[(int) k] = gOutputAccum[(int) k];
    
                /* shift accumulator */
                //memmove(gOutputAccum, gOutputAccum + stepSize, fftFrameSize * sizeof(float));
                for (k = 0; k < fftFrameSize; k++)
                {
                    gOutputAccum[(int) k] = gOutputAccum[(int) (k + stepSize)];
                }
    
                /* move input FIFO */
                for (k = 0; k < inFifoLatency; k++) gInFIFO[(int) k] = gInFIFO[(int) (k + stepSize)];
            }
        }
    }
    //endregion
    
    
    //region Private Static Methods
    public static void ShortTimeFourierTransform(float[] fftBuffer, long fftFrameSize, long sign)
    {
        float wr, wi, arg, temp;
        float tr, ti, ur, ui;
        long i, bitm, j, le, le2, k;
    
        for (i = 2; i < 2 * fftFrameSize - 2; i += 2)
        {
            for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1)
            {
                if ((i & bitm) != 0) j++;
                j <<= 1;
            }
            if (i < j)
            {
                temp = fftBuffer[(int) i];
                fftBuffer[(int) i] = fftBuffer[(int) j];
                fftBuffer[(int) j] = temp;
                temp = fftBuffer[(int) (i + 1)];
                fftBuffer[(int) (i + 1)] = fftBuffer[(int) (j + 1)];
                fftBuffer[(int) (j + 1)] = temp;
            }
        }
        long max = (long)(Math.log(fftFrameSize) / Math.log(2.0) + .5);
        for (k = 0, le = 2; k < max; k++)
        {
            le <<= 1;
            le2 = le >> 1;
            ur = 1.0F;
            ui = 0.0F;
            arg = (float)M_PI / (le2 >> 1);
            wr = (float)Math.cos(arg);
            wi = (float)(sign * Math.sin(arg));
            for (j = 0; j < le2; j += 2)
            {
    
                for (i = j; i < 2 * fftFrameSize; i += le)
                {
                    tr = fftBuffer[(int) (i + le2)] * ur - fftBuffer[(int) (i + le2 + 1)] * ui;
                    ti = fftBuffer[(int) (i + le2)] * ui + fftBuffer[(int) (i + le2 + 1)] * ur;
                    fftBuffer[(int) (i + le2)] = fftBuffer[(int) i] - tr;
                    fftBuffer[(int) (i + le2 + 1)] = fftBuffer[(int) (i + 1)] - ti;
                    fftBuffer[(int) i] += tr;
                    fftBuffer[(int) (i + 1)] += ti;
    
                }
                tr = ur * wr - ui * wi;
                ui = ur * wi + ui * wr;
                ur = tr;
            }
        }
    }
    //endregion
    
    
    private static double smbAtan2(double x, double y)
    {
      double signx;
      if (x > 0.) signx = 1.;  
      else signx = -1.;
    
      if (x == 0.) return 0.;
      if (y == 0.) return signx * M_PI / 2.;
      return Math.atan2(x, y);
    }
    
    }
    

    this code working too but very consumption cpu usage.

    pitchShift between 0.5 -2.0

    call this class as below:

    int maxValueOFShort = 32768;             
    short [] buffer = new short[800];               
    float[] inData = new float[buffer.length];
    while (audiorackIsRun) 
    {                               
     int m =  recorder.read(buffer, 0, buffer.length);                  
     for(int n=0; n<buffer.length;n++)
          inData[n] =  buffer[n]/(float)maxValueOFShort;    
    
     AudioPitch.PitchShift(1, buffer.length, 4096, 4, 44100, inData);
    
     for(int n=0; n<buffer.length;n++)
          buffer[n] = (short)(inData[n]*maxValueOFShort);  
    
      player.write(buffer, 0, buffer.length); 
    }
    
    0 讨论(0)
  • 2021-02-06 08:17

    In general, the algorithm is called a phase vocoder -- searching for that on the Internets should get you started.

    There are a few open source phase vocoders out there, you should be able to use those for reference too.

    You can do phase vocoder in real-time -- the main component used is the FFT, so you'll need a fast FFT. The Android libraries can do this for you, see this documentation: http://developer.android.com/reference/android/media/audiofx/Visualizer.html

    As it happens, I'm about to release an open source FFT for ARM that is faster than Apple's vDSP library (which was hitherto the fastest). I'll post back in a few days when I've uploaded it to github.com.

    Good luck.

    0 讨论(0)
  • 2021-02-06 08:31

    There is no built-in pitch shifting algorithm in the Android SDK. You have to code your own. Pitch shifting is a real hardcore DSP algorithm; good sounding algorithms are results of many months or rather years of development...

    I personally do not know any Java implementation so I suggest you to adopt some of the free C++ PS algorithms, the best one - which I use in my audio applications, is SoundTouch:

    http://www.surina.net/soundtouch/

    I played with its code a little and it seems it would not be too much complicated to rewrite it in Java.

    0 讨论(0)
提交回复
热议问题