Cumsum reset at NaN

后端 未结 4 1379
醉话见心
醉话见心 2020-11-27 05:21

If I have a pandas.core.series.Series named ts of either 1\'s or NaN\'s like this:

3382   NaN
3381   NaN
...
3369   NaN
3368   NaN
         


        
相关标签:
4条回答
  • 2020-11-27 06:06

    A simple Numpy translation of your Matlab code is this:

    import numpy as np
    
    v = np.array([1., 1., 1., np.nan, 1., 1., 1., 1., np.nan, 1.])
    n = np.isnan(v)
    a = ~n
    c = np.cumsum(a)
    d = np.diff(np.concatenate(([0.], c[n])))
    v[n] = -d
    np.cumsum(v)
    

    Executing this code returns the result array([ 1., 2., 3., 0., 1., 2., 3., 4., 0., 1.]). This solution will only be as valid as the original one, but maybe it will help you come up with something better if it isn't sufficient for your purposes.

    0 讨论(0)
  • 2020-11-27 06:19

    Here's a slightly more pandas-onic way to do it:

    v = Series([1, 1, 1, nan, 1, 1, 1, 1, nan, 1], dtype=float)
    n = v.isnull()
    a = ~n
    c = a.cumsum()
    index = c[n].index  # need the index for reconstruction after the np.diff
    d = Series(np.diff(np.hstack(([0.], c[n]))), index=index)
    v[n] = -d
    result = v.cumsum()
    

    Note that either of these requires that you're using pandas at least at 9da899b or newer. If you aren't then you can cast the bool dtype to an int64 or float64 dtype:

    v = Series([1, 1, 1, nan, 1, 1, 1, 1, nan, 1], dtype=float)
    n = v.isnull()
    a = ~n
    c = a.astype(float).cumsum()
    index = c[n].index  # need the index for reconstruction after the np.diff
    d = Series(np.diff(np.hstack(([0.], c[n]))), index=index)
    v[n] = -d
    result = v.cumsum()
    
    0 讨论(0)
  • 2020-11-27 06:22

    Even more pandas-onic way to do it:

    v = pd.Series([1., 3., 1., np.nan, 1., 1., 1., 1., np.nan, 1.])
    cumsum = v.cumsum().fillna(method='pad')
    reset = -cumsum[v.isnull()].diff().fillna(cumsum)
    result = v.where(v.notnull(), reset).cumsum()
    

    Contrary to the matlab code, this also works for values different from 1.

    0 讨论(0)
  • 2020-11-27 06:26

    If you can accept a similar boolean Series b, try

    (b.cumsum() - b.cumsum().where(~b).fillna(method='pad').fillna(0)).astype(int)
    

    Starting from your Series ts, either b = (ts == 1) or b = ~ts.isnull().

    0 讨论(0)
提交回复
热议问题