Two functions in parallel with multiple arguments and return values

后端 未结 3 1057
夕颜
夕颜 2021-02-06 04:09

I\'ve got two separate functions. Each of them takes quite a long time to execute.

def function1(arg):
     do_some_stuff_here
     return result1

def function2         


        
相关标签:
3条回答
  • 2021-02-06 04:37

    Here is an example of:

    1. Run a single function with multiple inputs in parallel using a Pool (square function) Interesting Side Note the mangled op on lines for "5 981 25"
    2. Run multiple functions with different inputs (Both args and kwargs) and collect their results using a Pool (pf1, pf2, pf3 functions)
    import datetime
    import multiprocessing
    import time
    import random
    
    from multiprocessing import Pool
    
    def square(x):
        # calculate the square of the value of x
        print(x, x*x)
        return x*x
    
    def pf1(*args, **kwargs):
        sleep_time = random.randint(3, 6)
        print("Process : %s\tFunction : %s\tArgs: %s\tsleeping for %d\tTime : %s\n" % (multiprocessing.current_process().name, "pf1", args, sleep_time, datetime.datetime.now()))
        print("Keyword Args from pf1: %s" % kwargs)
        time.sleep(sleep_time)
        print(multiprocessing.current_process().name, "\tpf1 done at %s\n" % datetime.datetime.now())
        return (sum(*args), kwargs)
    
    def pf2(*args):
        sleep_time = random.randint(7, 10)
        print("Process : %s\tFunction : %s\tArgs: %s\tsleeping for %d\tTime : %s\n" % (multiprocessing.current_process().name, "pf2", args, sleep_time, datetime.datetime.now()))
        time.sleep(sleep_time)
        print(multiprocessing.current_process().name, "\tpf2 done at %s\n" % datetime.datetime.now())
        return sum(*args)
    
    def pf3(*args):
        sleep_time = random.randint(0, 3)
        print("Process : %s\tFunction : %s\tArgs: %s\tsleeping for %d\tTime : %s\n" % (multiprocessing.current_process().name, "pf3", args, sleep_time, datetime.datetime.now()))
        time.sleep(sleep_time)
        print(multiprocessing.current_process().name, "\tpf3 done at %s\n" % datetime.datetime.now())
        return sum(*args)
    
    def smap(f, *arg):
        if len(arg) == 2:
            args, kwargs = arg
            return f(list(args), **kwargs)
        elif len(arg) == 1:
            args = arg
            return f(*args)
    
    
    if __name__ == '__main__':
    
        # Define the dataset
        dataset = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
    
        # Output the dataset
        print ('Dataset: ' + str(dataset))
    
        # Run this with a pool of 5 agents having a chunksize of 3 until finished
        agents = 5
        chunksize = 3
        with Pool(processes=agents) as pool:
            result = pool.map(square, dataset)
        print("Result of Squares : %s\n\n" % result)
        with Pool(processes=3) as pool:
            result = pool.starmap(smap, [(pf1, [1,2,3], {'a':123, 'b':456}), (pf2, [11,22,33]), (pf3, [111,222,333])])
    
        # Output the result
        print ('Result: %s ' % result)
    
    
    Output:
    *******
    
    Dataset: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
    1 1
    2 4
    3 9
    4 16
    6 36
    7 49
    8 64
    59 81
     25
    10 100
    11 121
    12 144
    13 169
    14 196
    Result of Squares : [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]
    
    
    Process : ForkPoolWorker-6  Function : pf1  Args: ([1, 2, 3],)  sleeping for 3  Time : 2020-07-20 00:51:56.477299
    
    Keyword Args from pf1: {'a': 123, 'b': 456}
    Process : ForkPoolWorker-7  Function : pf2  Args: ([11, 22, 33],)   sleeping for 8  Time : 2020-07-20 00:51:56.477371
    
    Process : ForkPoolWorker-8  Function : pf3  Args: ([111, 222, 333],)    sleeping for 1  Time : 2020-07-20 00:51:56.477918
    
    ForkPoolWorker-8    pf3 done at 2020-07-20 00:51:57.478808
    
    ForkPoolWorker-6    pf1 done at 2020-07-20 00:51:59.478877
    
    ForkPoolWorker-7    pf2 done at 2020-07-20 00:52:04.478016
    
    Result: [(6, {'a': 123, 'b': 456}), 66, 666] 
    
    Process finished with exit code 0
    
    
    
    0 讨论(0)
  • 2021-02-06 04:43

    First of all, Process, Pool and Queue all have different use case.

    Process is used to spawn a process by creating the Process object.

    from multiprocessing import Process
    
    def method1():
        print "in method1"
        print "in method1"
    
    def method2():
        print "in method2"
        print "in method2"
    
    p1 = Process(target=method1) # create a process object p1
    p1.start()                   # starts the process p1
    p2 = Process(target=method2)
    p2.start()
    

    Pool is used to parallelize execution of function across multiple input values.

    from multiprocessing import Pool
    
    def method1(x):
        print x
        print x**2
        return x**2
    
    p = Pool(3)
    result = p.map(method1, [1,4,9]) 
    print result          # prints [1, 16, 81]
    

    Queue is used to communicate between processes.

    from multiprocessing import Process, Queue
    
    def method1(x, l1):
        print "in method1"
        print "in method1"
        l1.put(x**2)
        return x
    
    def method2(x, l2):
        print "in method2"
        print "in method2"
        l2.put(x**3)
        return x
    
    l1 = Queue()
    p1 = Process(target=method1, args=(4, l1, ))  
    l2 = Queue()
    p2 = Process(target=method2, args=(2, l2, )) 
    p1.start()   
    p2.start()      
    print l1.get()          # prints 16
    print l2.get()          # prints 8
    

    Now, for your case you can use Process & Queue(3rd method) or you can manipulate the pool method to work (below)

    import itertools
    from multiprocessing import Pool
    import sys
    
    def method1(x):         
        print x
        print x**2
        return x**2
    
    def method2(x):        
        print x
        print x**3
        return x**3
    
    def unzip_func(a, b):  
        return a, b    
    
    def distributor(option_args):
        option, args = unzip_func(*option_args)    # unzip option and args 
    
        attr_name = "method" + str(option)            
        # creating attr_name depending on option argument
    
        value = getattr(sys.modules[__name__], attr_name)(args) 
        # call the function with name 'attr_name' with argument args
    
        return value
    
    
    option_list = [1,2]      # for selecting the method number
    args_list = [4,2]        
    # list of arg for the corresponding method, (argument 4 is for method1)
    
    p = Pool(3)              # creating pool of 3 processes
    
    result = p.map(distributor, itertools.izip(option_list, args_list)) 
    # calling the distributor function with args zipped as (option1, arg1), (option2, arg2) by itertools package
    print result             # prints [16,8]
    

    Hope this helps.

    0 讨论(0)
  • 2021-02-06 04:45

    This is another example I just found, hope it helps, nice and easy ;)

    from multiprocessing import Pool
    
    def square(x):
        return x * x
    
    def cube(y):
        return y * y * y
    
    pool = Pool(processes=20)
    
    result_squares = pool.map_async(square, range(10))
    result_cubes = pool.map_async(cube, range(10))
    
    print result_squares.get(timeout=3)
    print result_cubes.get(timeout=3)
    
    0 讨论(0)
提交回复
热议问题