I have a list comprehension which approximates to:
[f(x) for x in l if f(x)]
Where l is a list and f(x) is an expensive function which retu
How about defining:
def truths(L):
"""Return the elements of L that test true"""
return [x for x in L if x]
So that, for example
> [wife.children for wife in henry8.wives]
[[Mary1], [Elizabeth1], [Edward6], [], [], []]
> truths(wife.children for wife in henry8.wives)
[[Mary1], [Elizabeth1], [Edward6]]
Here is my solution:
filter(None, [f(x) for x in l])
[y for y in [f(x) for x in l] if y]
For your updated problem, this might be useful:
[g(x,y) for x in l for y in [f(x)] if y]
A solution (the best if you have repeated value of x) would be to memoize the function f, i.e. to create a wrapper function that saves the argument by which the function is called and save it, than return it if the same value is asked.
a really simple implementation is the following:
storage = {}
def memoized(value):
if value not in storage:
storage[value] = f(value)
return storage[value]
[memoized(x) for x in l if memoized(x)]
and then use this function in the list comprehension. This approach is valid under two condition, one theoretical and one practical. The first one is that the function f should be deterministic, i.e. returns the same results given the same input, and the other is that the object x can be used as a dictionary keys. If the first one is not valid than you should recompute f each timeby definition, while if the second one fails it is possible to use some slightly more robust approaches.
You can find a lot of implementation of memoization around the net, and I think that the new versions of python have something included in them too.
On a side note, never use the small L as a variable name, is a bad habit as it can be confused with an i or a 1 on some terminals.
EDIT:
as commented, a possible solution using generators comprehension (to avoid creating useless duplicate temporaries) would be this expression:
[g(x, fx) for x, fx in ((x,f(x)) for x in l) if fx]
You need to weight your choice given the computational cost of f, the number of duplication in the original list and memory at you disposition. Memoization make a space-speed tradeoff, meaning that it keep tracks of each result saving it, so if you have huge lists it can became costly on the memory occupation front.
There have been a lot of answers regarding memoizing. The Python 3 standard library now has a lru_cache
, which is a Last Recently Used Cache. So you can:
from functools import lru_cache
@lru_cache()
def f(x):
# function body here
This way your function will only be called once. You can also specify the size of the lru_cache
, by default this is 128. The problem with the memoize decorators shown above is that the size of the lists can grow well out of hand.
You should use a memoize decorator. Here is an interesting link.
Using memoization from the link and your 'code':
def memoize(f):
""" Memoization decorator for functions taking one or more arguments. """
class memodict(dict):
def __init__(self, f):
self.f = f
def __call__(self, *args):
return self[args]
def __missing__(self, key):
ret = self[key] = self.f(*key)
return ret
return memodict(f)
@memoize
def f(x):
# your code
[f(x) for x in l if f(x)]