How to merge pandas value_counts() to dataframe or use it to subset a dataframe

后端 未结 5 870
灰色年华
灰色年华 2021-02-05 23:53

I used pandas df.value_counts() to find the number of occurrences of particular brands. I want to merge those value counts with the respective brands in the initial dataframe.

相关标签:
5条回答
  • 2021-02-06 00:33
    df = ...
    key_col = "brand"
    count_col = "brand_count"
    
    result = (
        df.join(
            df[key_col].value_counts().rename(count_col), 
            how="left", 
            on=key_col)
    )
    

    If you need to join the counts to a different dataframe remember to fill NaNs with zeros:

    df = ...
    other = ...
    key_col = "brand"
    count_col = "brand_count"
    
    result = (
        other.join(
            df[key_col].value_counts().rename(count_col), 
            how="left", 
            on=key_col)
        .fillna({count_col: 0})
    )
    
    0 讨论(0)
  • 2021-02-06 00:34

    i think the best way is to use map

    df['brand_count']= df.brand.map(df.brand.value_counts())
    

    this is so much faster than groupby method for example (factor 500 on a 15000 row df) and take only one line

    0 讨论(0)
  • 2021-02-06 00:35

    You want to use transform.

    import numpy as np
    import pandas as pd
    
    np.random.seed(0)
    
    # Create dummy data.
    df = pd.DataFrame({'brands': ['brand{0}'.format(n) 
                       for n in np.random.random_integers(0, 5, 10)]})
    
    df['brand_count'] = \
        df.groupby('brands', as_index=False)['brands'].transform(lambda s: s.count())
    
    >>> df
       brands brand_count
    0  brand4           1
    1  brand5           2
    2  brand0           1
    3  brand3           4
    4  brand3           4
    5  brand3           4
    6  brand1           1
    7  brand3           4
    8  brand5           2
    9  brand2           1
    

    For reference:

    >>> df.brands.value_counts()
    brand3    4
    brand5    2
    brand4    1
    brand0    1
    brand1    1
    brand2    1
    Name: brands, dtype: int64
    
    0 讨论(0)
  • 2021-02-06 00:39

    is that what you want:

    import numpy as np
    import pandas as pd
    
    # generating random DataFrame
    brands_list = ['brand{}'.format(i) for i in range(10)]
    a = pd.DataFrame({'brands': np.random.choice(brands_list, 100)})
    b = pd.DataFrame(np.random.randint(0,10,size=(100, 3)), columns=list('ABC'))
    df = pd.concat([a, b], axis=1)
    print(df.head())
    
    # generate 'brands' DF
    brands = pd.DataFrame(df.brands.value_counts().reset_index())
    brands.columns = ['brands', 'count']
    print(brands)
    
    # merge 'df' & 'brands_count'
    merged = pd.merge(df, brands, on='brands')
    print(merged)
    

    PS first big part is just a dataframe generation.

    The part which is interesting for you starts with the # generate 'brands' DF comment

    0 讨论(0)
  • 2021-02-06 00:48

    Pandas DataFrame's merge and value_counts attributes are pretty fast, so I would combine the two.

    df.merge(df['brand'].value_counts().to_frame(), how='left', left_on='brand',
             right_index=True, suffixes=('', 'x'))\
      .rename(columns={'brandx':'brand_count'})
    
    0 讨论(0)
提交回复
热议问题