visual structure of a data.frame: locations of NAs and much more

后端 未结 4 1781
北恋
北恋 2021-02-05 22:07

I want to represent the structure of a data frame (or matrix, or data.table whatever) on a single plot with color-coding. I guess that could be very useful for many people handl

相关标签:
4条回答
  • 2021-02-05 22:50

    eventually I come up with a script to plot most of the specifications. I submit it here, some might be interested although the syntax is far from being "elegant"!

    Note that the main function 'colstr' has 3 arguments: - an input (df or matrix or even single vector) - a maximum row number to plot - an option to export to png into the working directory.

    the output gives, for instance: enter image description here

    # PACKAGES 
    require(ggplot2)
    require(RColorBrewer)
    require(reshape2)
    
    # Test if an object is empty (data.frame, matrix, vector)
    is.empty = function (input) {
      df <- data.frame(input)
      (is.null(df) || nrow(df) == 0 || ncol(df) == 0 || NROW(df) == 0)
    }
    
    #  min/max normalization (R->[0;1]), (all columns must be numerical)
    minmax <- function(data, ...) {
      .minmax = function(x) (x-min(x, ...))/(max(x, ...)-min(x, ...))
      # find constant columns, replaces with O.5:
      constant <- which(apply(data, 2, function(u) {min(u, ...)==max(u, ...)}))
      if(is.vector(data)) {
        res <- .minmax(data)
      } else {
        res <- apply(data, 2, .minmax)
      }
      res[, constant] <- 0.5
      return(res)
    }
    
    # MAIN function
    colstr = function(input, size.max=500, export=FALSE) {
      data      <- as.data.frame(input)
      if (NCOL(data) == 1) {
        data    <- cbind(data, data)
        message("warning: input data is a vector")
      }
      miror     <- data # miror data.frame will contain a coulour coding for all cells
      wholeNA   <- which(sapply(miror, function(x) all(is.na(x))))
      whole0    <- which(sapply(miror, function(x) all(x==0)))
      numeric   <- which(sapply(data, is.numeric))
      character <- which(sapply(data, is.character))
      factor    <- which(sapply(data, is.factor))
      # characters to code
      miror[character] <- 12 
      # factor coding
      miror[factor] <- 11
      # min/max normalization, coerce it into 9 classes.
      if (!is.empty(numeric)) {miror[numeric] <- minmax(miror[numeric], na.rm=T)}
      miror[numeric] <- data.frame(lapply(miror[numeric], function(x) cut(x, breaks=9, labels=1:9))) # 9 classes numériques
      miror <- data.frame(lapply(miror, as.numeric))
      # Na coding
      miror[is.na(data)] <- 10
      miror[whole0]    <- 13
      # color palette vector
      mypalette <- c(brewer.pal(n=9, name="Blues"), "red", "green", "purple", "grey")
      colnames <- c(paste0((1:9)*10, "%"), "NA", "factor (lvls)", "character", "zero")
      # subset if too large
      couper <- nrow(miror) > size.max
      if (couper) miror <- head(miror, size.max)
      # plot
      g <- ggplot(data=melt(as.matrix(unname(miror)))) + 
        geom_tile(aes(x=Var2, y=Var1, fill=factor(value, levels=1:13))) +
        scale_fill_manual("legend", values=mypalette, labels=colnames, drop=FALSE) +
        ggtitle(paste("graphical structure of", deparse(substitute(input)), paste(dim(input), collapse="X"), ifelse(couper, "(truncated)", ""))) +
        xlab("columns of the dataframe") + ylab("rows of the dataframe") +
        geom_point(data=data.frame(x=0, y=1:NROW(input)), aes(x,y), alpha=1-all(row.names(input)==seq(1, NROW(input)))) +
        scale_y_reverse(limits=c(min(size.max, nrow(miror)), 0))
      if (!is.empty(factor)) {
        g <- g + geom_text(data=data.frame(x     = factor, 
                                           y     = round(runif(length(factor), 2, NROW(miror)-2)), 
                                           label = paste0("(", sapply(data[factor], function(x) length(levels(x))), ")")),
                           aes(x=x, y=y, label=label))
      }
      if (export) {png("colstr_output.png"); print(g); dev.off()}
      return(g)
    }
    
    0 讨论(0)
  • 2021-02-05 23:00

    You can try out visdat package(https://github.com/ropensci/visdat), which shows the NA values and data types in the plot

    install.packages("visdat")
    library(visdat)
    vis_dat(airquality)
    
    0 讨论(0)
  • 2021-02-05 23:05

    Have you encountered the CSV fingerprint service? It creates a similar image, althought not with all the details you have outlined above, and it's not based on R. There is an R version of a similar idea at R-ohjelmointi.org, but the text is in Finnish. The main function is csvSormenjalki(). Maybe that could be adapted further to fulfill your whole vision?

    0 讨论(0)
  • 2021-02-05 23:06

    I know there is a package that shows missing values easily, but my google-fu is not very good at the moment. I did find, however, a function called tableplot, which will give you a grand overview of your data frame. I don't know whether or not it will show you missing data.

    Here's the link:

    http://www.ancienteco.com/2012/05/quickly-visualize-your-whole-dataset.html

    0 讨论(0)
提交回复
热议问题