DataFrame
df = pd.DataFrame({\'A\': [[\'gener\'], [\'gener\'], [\'system\'], [\'system\'], [\'gutter\'], [\'gutter\'], [\'gutter\'], [\'gutter\'
To check if every item in df.A
is contained in df.B
:
>>> df.apply(lambda row: all(i in row.B for i in row.A), axis=1)
# OR: ~(df['A'].apply(set) - df['B'].apply(set)).astype(bool)
0 False
1 False
2 True
3 True
4 True
5 True
6 True
7 True
8 True
9 True
10 True
11 True
12 True
13 True
14 True
15 True
16 True
17 True
18 True
19 True
dtype: bool
To get the union:
df['intersection'] = [list(set(a).intersection(set(b))) for a, b in zip(df.A, df.B)]
>>> df
A B intersection
0 [gener] [gutter] []
1 [gener] [gutter] []
2 [system] [gutter, system] [system]
3 [system] [gutter, guard, system] [system]
4 [gutter] [ohio, gutter] [gutter]
5 [gutter] [gutter, toledo] [gutter]
6 [gutter] [toledo, gutter] [gutter]
7 [gutter] [gutter] [gutter]
8 [gutter] [gutter] [gutter]
9 [gutter] [gutter] [gutter]
10 [aluminum] [how, to, instal, aluminum, gutter] [aluminum]
11 [aluminum] [aluminum, gutter] [aluminum]
12 [aluminum] [aluminum, gutter, color] [aluminum]
13 [aluminum] [aluminum, gutter] [aluminum]
14 [aluminum] [aluminum, gutter, adrian, ohio] [aluminum]
15 [aluminum] [aluminum, gutter, bowl, green, ohio] [aluminum]
16 [aluminum] [aluminum, gutter, maume, ohio] [aluminum]
17 [aluminum] [aluminum, gutter, perrysburg, ohio] [aluminum]
18 [aluminum] [aluminum, gutter, tecumseh, ohio] [aluminum]
19 [aluminum, toledo] [aluminum, gutter, toledo, ohio] [aluminum, toledo]
Just use the apply
function supported by pandas
, it's great.
Since you may have more than two columns for intersecting, the auxiliary function can be prepared like this and then applied with the DataFrame.apply
function (see http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html, note the option axis=1
means "across the series" while axis=0
means "along the series", where one
series is just one column in the data frame). Each row across the columns is then passed as a iterable Series
object to the function applied.
def intersect(ss):
ss = iter(ss)
s = set(next(ss))
for t in ss:
s.intersection_update(t) # `t' must not be a `set' here, `list' or any `Iterable` is OK
return s
res = df.apply(intersect, axis=1)
>>> res
0 {}
1 {}
2 {system}
3 {system}
4 {gutter}
5 {gutter}
6 {gutter}
7 {gutter}
8 {gutter}
9 {gutter}
10 {aluminum}
11 {aluminum}
12 {aluminum}
13 {aluminum}
14 {aluminum}
15 {aluminum}
16 {aluminum}
17 {aluminum}
18 {aluminum}
19 {aluminum, toledo}
You can augment further operations on the result of the auxiliary function, or make some variations similarly.
Hope this helps.