I have a large array in C (not C++ if that makes a difference). I want to initialize all members of the same value.
I could swear I
If you want to ensure that every member of the array is explicitly initialized, just omit the dimension from the declaration:
int myArray[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
The compiler will deduce the dimension from the initializer list. Unfortunately, for multidimensional arrays only the outermost dimension may be omitted:
int myPoints[][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9} };
is OK, but
int myPoints[][] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9} };
is not.
For statically initializing a large array with the same value, without multiple copy-paste, you can use macros:
#define VAL_1X 42
#define VAL_2X VAL_1X, VAL_1X
#define VAL_4X VAL_2X, VAL_2X
#define VAL_8X VAL_4X, VAL_4X
#define VAL_16X VAL_8X, VAL_8X
#define VAL_32X VAL_16X, VAL_16X
#define VAL_64X VAL_32X, VAL_32X
int myArray[53] = { VAL_32X, VAL_16X, VAL_4X, VAL_1X };
If you need to change the value, you have to do the replacement at only one place.
(courtesy of Jonathan Leffler)
You can easily generalize this with:
#define VAL_1(X) X
#define VAL_2(X) VAL_1(X), VAL_1(X)
/* etc. */
A variant can be created using:
#define STRUCTVAL_1(...) { __VA_ARGS__ }
#define STRUCTVAL_2(...) STRUCTVAL_1(__VA_ARGS__), STRUCTVAL_1(__VA_ARGS__)
/*etc */
that works with structures or compound arrays.
#define STRUCTVAL_48(...) STRUCTVAL_32(__VA_ARGS__), STRUCTVAL_16(__VA_ARGS__)
struct Pair { char key[16]; char val[32]; };
struct Pair p_data[] = { STRUCTVAL_48("Key", "Value") };
int a_data[][4] = { STRUCTVAL_48(12, 19, 23, 37) };
macro names are negotiable.
There is a fast way to initialize array of any type with given value. It works very well with large arrays. Algorithm is as follows:
For 1 000 000
elements int
array it is 4 times faster than regular loop initialization (i5, 2 cores, 2.3 GHz, 4GiB memory, 64 bits):
loop runtime 0.004248 [seconds]
memfill() runtime 0.001085 [seconds]
#include <stdio.h>
#include <time.h>
#include <string.h>
#define ARR_SIZE 1000000
void memfill(void *dest, size_t destsize, size_t elemsize) {
char *nextdest = (char *) dest + elemsize;
size_t movesize, donesize = elemsize;
destsize -= elemsize;
while (destsize) {
movesize = (donesize < destsize) ? donesize : destsize;
memcpy(nextdest, dest, movesize);
nextdest += movesize; destsize -= movesize; donesize += movesize;
}
}
int main() {
clock_t timeStart;
double runTime;
int i, a[ARR_SIZE];
timeStart = clock();
for (i = 0; i < ARR_SIZE; i++)
a[i] = 9;
runTime = (double)(clock() - timeStart) / (double)CLOCKS_PER_SEC;
printf("loop runtime %f [seconds]\n",runTime);
timeStart = clock();
a[0] = 10;
memfill(a, sizeof(a), sizeof(a[0]));
runTime = (double)(clock() - timeStart) / (double)CLOCKS_PER_SEC;
printf("memfill() runtime %f [seconds]\n",runTime);
return 0;
}
Nobody has mentioned the index order to access the elements of the initialized array. My example code will give an illustrative example to it.
#include <iostream>
void PrintArray(int a[3][3])
{
std::cout << "a11 = " << a[0][0] << "\t\t" << "a12 = " << a[0][1] << "\t\t" << "a13 = " << a[0][2] << std::endl;
std::cout << "a21 = " << a[1][0] << "\t\t" << "a22 = " << a[1][1] << "\t\t" << "a23 = " << a[1][2] << std::endl;
std::cout << "a31 = " << a[2][0] << "\t\t" << "a32 = " << a[2][1] << "\t\t" << "a33 = " << a[2][2] << std::endl;
std::cout << std::endl;
}
int wmain(int argc, wchar_t * argv[])
{
int a1[3][3] = { 11, 12, 13, // The most
21, 22, 23, // basic
31, 32, 33 }; // format.
int a2[][3] = { 11, 12, 13, // The first (outer) dimension
21, 22, 23, // may be omitted. The compiler
31, 32, 33 }; // will automatically deduce it.
int a3[3][3] = { {11, 12, 13}, // The elements of each
{21, 22, 23}, // second (inner) dimension
{31, 32, 33} }; // can be grouped together.
int a4[][3] = { {11, 12, 13}, // Again, the first dimension
{21, 22, 23}, // can be omitted when the
{31, 32, 33} }; // inner elements are grouped.
PrintArray(a1);
PrintArray(a2);
PrintArray(a3);
PrintArray(a4);
// This part shows in which order the elements are stored in the memory.
int * b = (int *) a1; // The output is the same for the all four arrays.
for (int i=0; i<9; i++)
{
std::cout << b[i] << '\t';
}
return 0;
}
The output is:
a11 = 11 a12 = 12 a13 = 13
a21 = 21 a22 = 22 a23 = 23
a31 = 31 a32 = 32 a33 = 33
a11 = 11 a12 = 12 a13 = 13
a21 = 21 a22 = 22 a23 = 23
a31 = 31 a32 = 32 a33 = 33
a11 = 11 a12 = 12 a13 = 13
a21 = 21 a22 = 22 a23 = 23
a31 = 31 a32 = 32 a33 = 33
a11 = 11 a12 = 12 a13 = 13
a21 = 21 a22 = 22 a23 = 23
a31 = 31 a32 = 32 a33 = 33
11 12 13 21 22 23 31 32 33
I saw some code that used this syntax:
char* array[] =
{
[0] = "Hello",
[1] = "World"
};
Where it becomes particularly useful is if you're making an array that uses enums as the index:
enum
{
ERR_OK,
ERR_FAIL,
ERR_MEMORY
};
#define _ITEM(x) [x] = #x
char* array[] =
{
_ITEM(ERR_OK),
_ITEM(ERR_FAIL),
_ITEM(ERR_MEMORY)
};
This keeps things in order, even if you happen to write some of the enum-values out of order.
More about this technique can be found here and here.