mathplotlib imshow complex 2D array

后端 未结 4 1729
心在旅途
心在旅途 2021-02-05 16:32

Is there any good way how to plot 2D array of complex numbers as image in mathplotlib ?

It makes very much sense to map magnitude of complex number as \"brightness\" or

相关标签:
4条回答
  • 2021-02-05 17:03

    this does almost the same of @Hooked code but very much faster.

    import numpy as np
    from numpy import pi
    import pylab as plt
    from colorsys import hls_to_rgb
    
    def colorize(z):
        r = np.abs(z)
        arg = np.angle(z) 
    
        h = (arg + pi)  / (2 * pi) + 0.5
        l = 1.0 - 1.0/(1.0 + r**0.3)
        s = 0.8
    
        c = np.vectorize(hls_to_rgb) (h,l,s) # --> tuple
        c = np.array(c)  # -->  array of (3,n,m) shape, but need (n,m,3)
        c = c.swapaxes(0,2) 
        return c
    
    N=1000
    x,y = np.ogrid[-5:5:N*1j, -5:5:N*1j]
    z = x + 1j*y
    
    w = 1/(z+1j)**2 + 1/(z-2)**2
    img = colorize(w)
    plt.imshow(img)
    plt.show()
    
    0 讨论(0)
  • 2021-02-05 17:08

    Adapting the plotting code from mpmath you can plot a numpy array even if you don't known the original function with numpy and matplotlib. If you do know the function, see my original answer using mpmath.cplot.

    from colorsys import hls_to_rgb
    
    def colorize(z):
        n,m = z.shape
        c = np.zeros((n,m,3))
        c[np.isinf(z)] = (1.0, 1.0, 1.0)
        c[np.isnan(z)] = (0.5, 0.5, 0.5)
    
        idx = ~(np.isinf(z) + np.isnan(z))
        A = (np.angle(z[idx]) + np.pi) / (2*np.pi)
        A = (A + 0.5) % 1.0
        B = 1.0 - 1.0/(1.0+abs(z[idx])**0.3)
        c[idx] = [hls_to_rgb(a, b, 0.8) for a,b in zip(A,B)]
        return c
    

    From here, you can plot an arbitrary complex numpy array:

    N = 1000
    A = np.zeros((N,N),dtype='complex')
    axis_x = np.linspace(-5,5,N)
    axis_y = np.linspace(-5,5,N)
    X,Y = np.meshgrid(axis_x,axis_y)
    Z = X + Y*1j
    
    A = 1/(Z+1j)**2 + 1/(Z-2)**2
    
    # Plot the array "A" using colorize
    import pylab as plt
    plt.imshow(colorize(A), interpolation='none',extent=(-5,5,-5,5))
    plt.show()
    

    enter image description here

    0 讨论(0)
  • 2021-02-05 17:19

    You can use matplotlib.colors.hsv_to_rgb instead of colorsys.hls_to_rgb. The matplotlib function is about 10 times faster! See the results below:

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import hsv_to_rgb
    import time
    
    def Complex2HSV(z, rmin, rmax, hue_start=90):
        # get amplidude of z and limit to [rmin, rmax]
        amp = np.abs(z)
        amp = np.where(amp < rmin, rmin, amp)
        amp = np.where(amp > rmax, rmax, amp)
        ph = np.angle(z, deg=1) + hue_start
        # HSV are values in range [0,1]
        h = (ph % 360) / 360
        s = 0.85 * np.ones_like(h)
        v = (amp -rmin) / (rmax - rmin)
        return hsv_to_rgb(np.dstack((h,s,v)))
    

    here is the method of picked answer by @nadapez:

    from colorsys import hls_to_rgb
    def colorize(z):
        r = np.abs(z)
        arg = np.angle(z) 
    
        h = (arg + np.pi)  / (2 * np.pi) + 0.5
        l = 1.0 - 1.0/(1.0 + r**0.3)
        s = 0.8
    
        c = np.vectorize(hls_to_rgb) (h,l,s) # --> tuple
        c = np.array(c)  # -->  array of (3,n,m) shape, but need (n,m,3)
        c = c.swapaxes(0,2) 
        return c
    

    Testing the results from the two method with 1024*1024 2darray:

    N=1024
    x, y = np.ogrid[-4:4:N*1j, -4:4:N*1j]
    z = x + 1j*y
    
    t0 = time.time()
    img = Complex2HSV(z, 0, 4)
    t1 = time.time()
    print "Complex2HSV method: "+ str (t1 - t0) +" s"
    
    t0 = time.time()
    img = colorize(z)
    t1 = time.time()
    print "colorize method: "+ str (t1 - t0) +" s"
    

    This result on my old laptop:

    Complex2HSV method: 0.250999927521 s
    colorize method: 2.03200006485 s
    
    0 讨论(0)
  • 2021-02-05 17:21

    The library mpmath uses matplotlib to produce beautiful images of the complex plane. On the complex plane you usually care about the poles, so the argument of the function gives the color (hence poles will make a spiral). Regions of extremely large or small values are controlled by the saturation. From the docs:

    By default, the complex argument (phase) is shown as color (hue) and the magnitude is show as brightness. You can also supply a custom color function (color). This function should take a complex number as input and return an RGB 3-tuple containing floats in the range 0.0-1.0.

    Example:

    import mpmath
    mpmath.cplot(mpmath.gamma, points=100000)
    

    enter image description here

    Another example showing the zeta function, the trivial zeros and the critical strip:

    import mpmath
    mpmath.cplot(mpmath.zeta, [-45,5],[-25,25], points=100000)
    

    enter image description here

    0 讨论(0)
提交回复
热议问题