I am trying to implement a function primeFac()
that takes as input a positive integer n
and returns a list containing all the numbers in the prime
You can use sieve Of Eratosthenes to generate all the primes up to (n/2) + 1
and then use a list comprehension to get all the prime factors:
def rwh_primes2(n):
# http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a list of primes, 2 <= p < n """
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n/3)
sieve[0] = False
for i in xrange(int(n**0.5)/3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)/3) ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]
def primeFacs(n):
primes = rwh_primes2((n/2)+1)
return [x for x in primes if n%x == 0]
print primeFacs(99999)
#[3, 41, 271]
def factorize(n):
for f in range(2,n//2+1):
while n%f == 0:
n //= f
yield f
It's slow but dead simple. If you want to create a command-line utility, you could do:
import sys
[print(i) for i in factorize(int(sys.argv[1]))]
Simple way to get the desired solution
def Factor(n):
d = 2
factors = []
while n >= d*d:
if n % d == 0:
n//=d
# print(d,end = " ")
factors.append(d)
else:
d = d+1
if n>1:
# print(int(n))
factors.append(n)
return factors
def get_prime_factors(number):
"""
Return prime factor list for a given number
number - an integer number
Example: get_prime_factors(8) --> [2, 2, 2].
"""
if number == 1:
return []
# We have to begin with 2 instead of 1 or 0
# to avoid the calls infinite or the division by 0
for i in xrange(2, number):
# Get remainder and quotient
rd, qt = divmod(number, i)
if not qt: # if equal to zero
return [i] + get_prime_factors(rd)
return [number]
def prime_factors(num, dd=2):
while dd <= num and num>1:
if num % dd == 0:
num //= dd
yield dd
dd +=1
Lot of answers above fail on small primes, e.g. 3, 5 and 7. The above is succinct and fast enough for ordinary use.
print list(prime_factors(3))
[3]