Explode (transpose?) multiple columns in Spark SQL table

前端 未结 2 1524
深忆病人
深忆病人 2020-11-27 04:56

I am using Spark SQL (I mention that it is in Spark in case that affects the SQL syntax - I\'m not familiar enough to be sure yet) and I have a table that I am trying to re-

相关标签:
2条回答
  • 2020-11-27 05:10

    You could also try

    case class Input(
     userId: Integer,
     someString: String,
     varA: Array[Integer],
     varB: Array[Integer])
    
    case class Result(
     userId: Integer,
     someString: String,
     varA: Integer,
     varB: Integer)
    
    def getResult(row : Input) : Iterable[Result] = {
     val user_id = row.user_id
     val someString = row.someString
     val varA = row.varA
     val varB = row.varB
     val seq = for( i <- 0 until varA.size) yield {Result(user_id,someString,varA(i),varB(i))}
     seq
     }
    
    val obj1 = Input(1, "string1", Array(0, 2, 5), Array(1, 2, 9))
    val obj2 = Input(2, "string2", Array(1, 3, 6), Array(2, 3, 10))
    val input_df = sc.parallelize(Seq(obj1, obj2)).toDS
    
    val res = input_df.flatMap{ row => getResult(row) }
    res.show
    // +------+----------+----+-----+
    // |userId|someString|varA|varB |
    // +------+----------+----+-----+
    // |     1|  string1 |   0|   1 |
    // |     1|  string1 |   2|   2 |
    // |     1|  string1 |   5|   9 |
    // |     2|  string2 |   1|   2 |
    // |     2|  string2 |   3|   3 |
    // |     2|  string2 |   6|   10|
    // +------+----------+----+-----+
    
    0 讨论(0)
  • 2020-11-27 05:27

    Spark >= 2.4

    You can skip zip udf and use arrays_zip function:

    df.withColumn("vars", explode(arrays_zip($"varA", $"varB"))).select(
      $"userId", $"someString",
      $"vars.varA", $"vars.varB").show
    

    Spark < 2.4

    What you want is not possible without a custom UDF. In Scala you could do something like this:

    val data = sc.parallelize(Seq(
        """{"userId": 1, "someString": "example1",
            "varA": [0, 2, 5], "varB": [1, 2, 9]}""",
        """{"userId": 2, "someString": "example2",
            "varA": [1, 20, 5], "varB": [9, null, 6]}"""
    ))
    
    val df = spark.read.json(data)
    
    df.printSchema
    // root
    //  |-- someString: string (nullable = true)
    //  |-- userId: long (nullable = true)
    //  |-- varA: array (nullable = true)
    //  |    |-- element: long (containsNull = true)
    //  |-- varB: array (nullable = true)
    //  |    |-- element: long (containsNull = true)
    

    Now we can define zip udf:

    import org.apache.spark.sql.functions.{udf, explode}
    
    val zip = udf((xs: Seq[Long], ys: Seq[Long]) => xs.zip(ys))
    
    df.withColumn("vars", explode(zip($"varA", $"varB"))).select(
       $"userId", $"someString",
       $"vars._1".alias("varA"), $"vars._2".alias("varB")).show
    
    // +------+----------+----+----+
    // |userId|someString|varA|varB|
    // +------+----------+----+----+
    // |     1|  example1|   0|   1|
    // |     1|  example1|   2|   2|
    // |     1|  example1|   5|   9|
    // |     2|  example2|   1|   9|
    // |     2|  example2|  20|null|
    // |     2|  example2|   5|   6|
    // +------+----------+----+----+
    

    With raw SQL:

    sqlContext.udf.register("zip", (xs: Seq[Long], ys: Seq[Long]) => xs.zip(ys))
    df.registerTempTable("df")
    
    sqlContext.sql(
      """SELECT userId, someString, explode(zip(varA, varB)) AS vars FROM df""")
    
    0 讨论(0)
提交回复
热议问题