Intersection between bezier curve and a line segment

前端 未结 2 1250
挽巷
挽巷 2021-02-05 15:04

I am writing a game in Python (with pygame) that requires me to generate random but nice-looking \"sea\" for each new game. After a long search I settled on an algorithm that in

相关标签:
2条回答
  • 2021-02-05 15:31

    As a rough outline, rotate and translate the system so that the line segment lies on the X axis. Now the y coordinate is a cubic function of the parameter t. Find the 'zeros' (the analytic formulae will be found in good math texts or wikipedia). Now evaluate the x coordinates corresponding to those zero points and test against your line segment.

    0 讨论(0)
  • 2021-02-05 15:36

    I've finally got to a working code to illustrate the method suggested by Mark Thornton. Below is the Python code for the intersection routine, together with pygame code to test it visually. The cubic roots solution can be written based on this question.

    import pygame
    from pygame.locals import *
    import sys
    import random
    from math import sqrt, fabs, pow
    from lines import X, Y
    import itertools
    import pygame
    from pygame import draw, Color
    import padlib
    from roots_detailed import cubicRoots
    
    
    def add_points(*points):
        X = 0
        Y = 0
        for (x,y) in points:
            X += x
            Y += y
        return (X,Y)
    
    def diff_points(p2, p1):
        # p2 - p1
        return (X(p2)-X(p1), Y(p2)-Y(p1));
    
    def scale_point(factor, p):
        return (factor * X(p), factor*Y(p))
    
    def between(v0, v, v1):
        if v0 > v1: v0, v1 = v1, v0
        return v >= v0 and v <= v1
    
    
    # the point is guaranteed to be on the right line
    def pointOnLineSegment(l1, l2, point):
        return between(X(l1), X(point), X(l2)) and between(Y(l1), Y(point), Y(l2))
    
    
    def rotate(x, y, R1, R2, R3, R4):
        return (x*R1 + y*R2, x*R3 + y * R4);
    
    def findIntersections(p0, p1, m0, m1, l1, l2):
        # We're solving the equation of one segment of Kochanek-Bartels
        # spline intersecting with a line segment
        # The spline is described at http://en.wikipedia.org/wiki/Cubic_Hermite_spline 
        # The discussion on the adopted solution can be found at https://stackoverflow.com/questions/1813719/intersection-between-bezier-curve-and-a-line-segment
        # 
        # The equation we're solving is 
        #
        # h00(t) p0 + h10(t) m0 + h01(t) p1 + h11(t) m1 = u + v t1
        #
        # where 
        #
        # h00(t) = 2t^3 - 3t^2 + 1
        # h10(t) = t^3 - 2t^2 + t
        # h01(t) = -2t^3 + 3t^2
        # h11(t) = t^3 - t^2
        # u = l1
        # v = l2-l1
    
        u = l1
        v = diff_points(l2, l1);
    
        # The first thing we do is to move u to the other side:
        #
        # h00(t) p0 + h10(t) m0 + h01(t) p1 + h11(t) m1 - u = v t1
        #
        # Then we're looking for matrix R that would turn (v t1) into
        # ({|v|, 0} t1). This is rotation of coordinate system matrix,
        # described at http://mathworld.wolfram.com/RotationMatrix.html
        #
        # R(h00(t) p0 + h10(t) m0 + h01(t) p1 + h11(t) m1 - u) = R(v t1) = {|v|, 0}t1
        #
        # We only care about R[1,0] and R[1,1] because it lets us solve
        # the equation for y coordinate where y == 0 (intersecting the
        # spline segment with the x axis of rotated coordinate
        # system). I'll call R[1,0] = R3 and R[1,1] = R4 . 
    
        v_abs = sqrt(v[0] ** 2 + v[1] ** 2)
        R1 =  X(v) / v_abs
        R2 =  Y(v) / v_abs
        R3 = -Y(v) / v_abs
        R4 =  X(v) / v_abs
    
    
        # The letters x and y are denoting x and y components of vectors
        # p0, p1, m0, m1, and u.
    
        p0x = p0[0]; p0y = p0[1]
        p1x = p1[0]; p1y = p1[1]
        m0x = m0[0]; m0y = m0[1]
        m1x = m1[0]; m1y = m1[1]
        ux = X(u); uy = Y(u)
    
        #
        #
        #   R3(h00(t) p0x + h10(t) m0x + h01(t) p1x + h11(t) m1x - ux) +
        # + R4(h00(t) p0y + h10(t) m0y + h01(t) p1y + h11(t) m1y - uy) = 0
        #
        # Opening all parentheses and simplifying for hxx we get:
        #
        #   h00(t) p0x R3 + h10(t) m0x R3 + h01(t) p1x R3 + h11(t) m1x R3 - ux R3 +
        # + h00(t) p0y R4 + h10(t) m0y R4 + h01(t) p1y R4 + h11(t) m1y R4 - uy R4 = 0
        # 
        #   h00(t) p0x R3 + h10(t) m0x R3 + h01(t) p1x R3 + h11(t) m1x R3 - ux R3 + 
        # + h00(t) p0y R4 + h10(t) m0y R4 + h01(t) p1y R4 + h11(t) m1y R4 - uy R4 = 0
        # 
        #   (1)
        #   h00(t) (p0x R3 + p0y R4) + h10(t) (m0x R3 + m0y R4) + 
        #   h01(t) (p1x R3 + p1y R4) + h11(t) (m1x R3 + m1y R4) - (ux R3 + uy R4) = 0
        #
        # We now introduce new substitution
    
        K00 = p0x * R3 + p0y * R4
        K10 = m0x * R3 + m0y * R4
        K01 = p1x * R3 + p1y * R4
        K11 = m1x * R3 + m1y * R4
        U = ux * R3 + uy * R4
    
        # Expressed in those terms, equation (1) above becomes
        #
        # h00(t) K00 + h10(t) K10 + h01(t) K01 + h11(t) K11 - U = 0
        #
        # We will now substitute the expressions for hxx(t) functions
        #
        # (2t^3 - 3t^2 + 1) K00 + (t^3 - 2t^2 + t) K10 + (-2t^3 + 3t^2) K01 + (t^3 - t^2) K11 - U = 0
        # 
        #   2 K00 t^3 - 3 K00 t^2 + K00 + 
        # + K10 t^3 - 2 K10 t^2 + K10 t - 
        # - 2 K01 t^3 + 3 K01 t^2 + 
        # + K11 t^3  - K11 t^2 - U = 0
        # 
        #   2 K00 t^3 - 3 K00 t^2 +    0t +  K00 
        # + K10   t^3 - 2 K10 t^2 + K10 t
        # - 2 K01 t^3 + 3 K01 t^2 
        # +   K11 t^3 -   K11 t^2 +    0t -   U = 0
        # 
        #  (2 K00 + K10 - 2K01 + K11) t^3 
        # +(-3 K00 - 2K10 + 3 K01 - K11) t^2
        # + K10 t
        # + K00 - U = 0
        # 
        # 
        # (2 K00 + K10 - 2K01 + K11) t^3 + (-3 K00 - 2K10 + 3 K01 - K11) t^2 + K10 t + K00 - U = 0
        #
        # All we need now is to solwe a cubic equation
        valuesOfT = cubicRoots((2 * K00 + K10 - 2 * K01 + K11),
                               (-3 * K00 - 2 * K10 + 3 * K01 - K11),
                               (K10),
                               K00 - U)
        # We can then put the values of it into our original spline segment
        # formula to find the potential intersection points.  Any point
        # that's on original line segment is an intersection
    
        def h00(t): return 2 * t**3 - 3 * t**2 + 1
        def h10(t): return t**3 - 2 * t**2 + t
        def h01(t): return -2 * t**3 + 3 * t**2
        def h11(t): return t**3 - t**2
    
        intersections = []
        for t in valuesOfT:
            if t < 0 or t > 1.0: continue
            # point = h00(t) * p0 + h10(t) * m0 + h01(t) * p1 + h11(t) * m1
            point = add_points(
                scale_point(h00(t), p0),
                scale_point(h10(t), m0),
                scale_point(h01(t), p1),
                scale_point(h11(t), m1)
                )
    
            if pointOnLineSegment(l1, l2, point): intersections.append(point)
    
    
        return intersections
    
    def findIntersectionsManyCurves(p0_array, p1_array, m0_array, m1_array, u, v):
        result = [];
        for (p0, p1, m0, m1) in itertools.izip(p0_array, p1_array, m0_array, m1_array):
            result.extend(findIntersections(p0, p1, m0, m1, u, v))
        return result
    
    
    def findIntersectionsManyCurvesManyLines(p0, p1, m0, m1, points):
        result = [];
    
        for (u,v) in itertools.izip(*[iter(points)]*2):
            result.extend(findIntersectionsManyCurves(p0, p1, m0, m1, u, v))
    
        return result
    
    class EventsEmitter(object):
        def __init__(self):
            self.consumers = []
    
        def emit(self, eventName, *params):
            for method in self.consumers:
                funcName = method.im_func.func_name if hasattr(method, "im_func") else method.func_name
                if funcName == eventName:
                    method(*params)
        def register(self, method):
            self.consumers.append(method)
    
        def unregister(self, method):
            self.consumers.remove(method)
    
    
    
    class BunchOfPointsModel(EventsEmitter):
        def __init__(self):
            EventsEmitter.__init__(self)
            self.pts = []
    
    
        def points(self):
            return self.pts.__iter__()
    
        def pointsSequence(self):
            return tuple(self.pts)
    
        def have(self, point):
            return point in self.pts
    
        def addPoint(self,p):
            self.pts.append(p)
            self.emit("pointsChanged", p)
    
        def replacePoint(self, oldP, newP):
            idx = self.pts.index(oldP)
            self.pts[idx] = newP
            self.emit("pointsChanged", newP)
    
    
        def removePoint(self, p):
            self.point.remove(p)
            self.emit("pointsChanged", p)
    
    
    class BunchOfPointsCompositeModel(object):
        def __init__(self, m1, m2):
            self.m1 = m1
            self.m2 = m2
    
        def points(self):
            return itertools.chain(self.m1.points(), self.m2.points())
    
        def have(self, point):
            return self.m1.have(point) or self.m2.have(point)
    
    
        def replacePoint(self, oldP, newP):
            if self.m1.have(oldP):
                self.m1.replacePoint(oldP, newP)
            else:
                self.m2.replacePoint(oldP, newP)
    
        def removePoint(self, p):
            if self.m1.have(p):
                self.m1.removePoint(p)
            else:
                self.m2.removePoint(p)
    
        def register(self, method):
            self.m1.register(method)
            self.m2.register(method)
    
        def unregister(self, method):
            self.m1.unregister(method)
            self.m2.unregister(method)
    
    class BunchOfPointsDragController(EventsEmitter):
        def __init__(self, model):
            EventsEmitter.__init__(self)
            self.model = model
            self.draggedPoint = None
    
        def mouseMovedTo(self, x,y):
            if self.draggedPoint != None:
                newPoint = (x,y)
                draggedPoint = self.draggedPoint
                self.draggedPoint = newPoint
                self.model.replacePoint(draggedPoint, newPoint)
        def buttonDown(self, x,y):
            if self.draggedPoint == None:
                closePoint = self.getCloseEnoughPoint(x,y)
                if closePoint != None:
                    self.draggedPoint = closePoint
                    self.emit("dragPointChanged",closePoint)
    
        def buttonUp(self, x,y):
            self.mouseMovedTo(x,y)
            self.draggedPoint = None
            self.emit("dragPointChanged", None)
    
        def getCloseEnoughPoint(self, x,y):
            minSquareDistance = 25
            closestPoint = None
            for point in self.model.points():
                dx = X(point) - x
                dy = Y(point) - y
                distance = dx*dx + dy*dy
                if minSquareDistance > distance:
                    closestPoint = point
                    minSquareDistance = distance
            return closestPoint
    
        def isDraggedPoint(self, p):
            return p is self.draggedPoint
    
    class CurvesLinesViewPointsView(object):
        def __init__(self, screen, modelCurves, modelLines, model, controller):
            self.screen = screen
            self.modelLines = modelLines
            self.modelCurves = modelCurves
            self.controller = controller
            controller.register(self.dragPointChanged)
            model.register(self.pointsChanged)
    
        def draw(self):
            self.screen.fill(Color("black"))
            pygame.draw.lines(self.screen, Color("cyan"), 0, self.modelLines.pointsSequence(), 3)
            (p0, p1, m0, m1) =  padlib.BezierCurve(screen,modelCurves.pointsSequence(),3,100,Color("magenta"))
    
            self.drawPointSet(self.modelCurves.points(),
                              lambda(p):self.controller.isDraggedPoint(p),
                              Color("white"), Color("red"))
            self.drawPointSet(self.modelLines.points(),
                              lambda(p):self.controller.isDraggedPoint(p),
                              Color("lightgray"), Color("red"))
    
    
            self.drawSimplePointSet(findIntersectionsManyCurvesManyLines(p0, p1, m0, m1,self.modelLines.points()),
                              Color("blue"))
    
    
    
    
        def drawSimplePointSet(self, points, normalColor):
            self.drawPointSet(points, lambda(p):True, None, normalColor);
    
        def drawPointSet(self, points, specialPoint, normalColor, specialColor):
            for p in points:
                if specialPoint(p):
                    draw.circle(self.screen, specialColor, p, 6)
                else:
                    draw.circle(self.screen, normalColor, p, 2)
            pygame.display.update()
    
        def dragPointChanged(self, p): self.draw()
        def pointsChanged(self, p): self.draw()
    
    
    class PygameEventsDistributor(EventsEmitter):
        def __init__(self):
            EventsEmitter.__init__(self)
        def processEvent(self, e):
            if e.type == MOUSEMOTION:
                self.emit("mouseMovedTo", e.pos[0], e.pos[1])
            elif e.type == MOUSEBUTTONDOWN:
                self.emit("buttonDown", e.pos[0], e.pos[1])
            elif e.type == MOUSEBUTTONUP:
                self.emit("buttonUp", e.pos[0], e.pos[1])
    
    
    modelLines = BunchOfPointsModel()
    modelCurves = BunchOfPointsModel()
    model = BunchOfPointsCompositeModel(modelLines, modelCurves);
    controller = BunchOfPointsDragController(model)
    
    distributor = PygameEventsDistributor()
    distributor.register(controller.mouseMovedTo)
    distributor.register(controller.buttonUp)
    distributor.register(controller.buttonDown)
    
    pygame.init()
    screen = pygame.display.set_mode((640, 480))
    
    modelCurves.addPoint((29,34))
    modelCurves.addPoint((98,56))
    modelCurves.addPoint((200, 293))
    modelCurves.addPoint((350, 293))
    
    modelLines.addPoint((23,123))
    modelLines.addPoint((78,212))
    
    view = CurvesLinesViewPointsView(screen, modelCurves, modelLines, model, controller)
    
    
    keepGoing = True
    
    try:
        while (keepGoing):
            for event in pygame.event.get():
                if event.type == QUIT:
                    keepGoing = False
                    break
                distributor.processEvent(event)
            pass
    finally:
        pygame.quit()
    
    0 讨论(0)
提交回复
热议问题