Pandas Fillna Mode

后端 未结 6 1272
借酒劲吻你
借酒劲吻你 2021-02-05 12:13

I have a data set in which there is a column known as Native Country which contain around 30000 records. Some are missing represented by NaN so I thoug

相关标签:
6条回答
  • 2021-02-05 12:23

    Just call first element of series:

    data['Native Country'].fillna(data['Native Country'].mode()[0], inplace=True)
    

    or you can do the same with assisgnment:

    data['Native Country'] = data['Native Country'].fillna(data['Native Country'].mode()[0])
    
    0 讨论(0)
  • 2021-02-05 12:23

    Be careful, NaN may be the mode of your dataframe: in this case, you are replacing NaN with another NaN.

    0 讨论(0)
  • 2021-02-05 12:26

    Try something like: fill_mode = lambda col: col.fillna(col.mode()) and for the function: new_df = df.apply(fill_mode, axis=0)

    0 讨论(0)
  • 2021-02-05 12:32

    You can get the number 'mode' or any another strategy

    num = data['Native Country'].mode()
    data['Native Country'].fillna(num, inplace=True)
    

    or in one line like this

    data['Native Country'].fillna(data['Native Country'].mode()[0], inplace=True)
    
    0 讨论(0)
  • 2021-02-05 12:37
    import numpy as np
    
    import pandas as pd
    
    print(pd.__version__)
    

    1.2.0

    df = pd.DataFrame({'Country': [np.nan, 'France', np.nan, 'Spain', 'France'], 'Purchased': [np.nan,'Yes', 'Yes', 'No', np.nan]})
    
    Country Purchased
    0 NaN NaN
    1 France Yes
    2 NaN Yes
    3 Spain No
    4 France NaN
     df.fillna(df.mode())  ## only applied on first row because df.mode() returns a dataframe with one row
    
    Country Purchased
    0 France Yes
    1 France Yes
    2 NaN Yes
    3 Spain No
    4 France NaN
    df = pd.DataFrame({'Country': [np.nan, 'France', np.nan, 'Spain', 'France'], 'Purchased': [np.nan,'Yes', 'Yes', 'No', np.nan]})
    
    df.fillna(df.mode().iloc[0]) ## convert df to a series
    
    Country Purchased
    0 France Yes
    1 France Yes
    2 France Yes
    3 Spain No
    4 France Yes
    0 讨论(0)
  • 2021-02-05 12:44

    If we fill in the missing values with fillna(df['colX'].mode()), since the result of mode() is a Series, it will only fill in the first couple of rows for the matching indices. At least if done as below:

    fill_mode = lambda col: col.fillna(col.mode())
    df.apply(fill_mode, axis=0)
    

    However, by simply taking the first value of the Series fillna(df['colX'].mode()[0]), I think we risk introducing unintended bias in the data. If the sample is multimodal, taking just the first mode value makes the already biased imputation method worse. For example, taking only 0 if we have [0, 21, 99] as the equally most frequent values. Or filling missing values with False when True and False values are equally frequent in a given column.

    I don't have a clear cut solution here. Assigning a random value from all the local maxima could be one approach if using the mode is a necessity.

    0 讨论(0)
提交回复
热议问题