Show standard devation using geom_smooth and ggplot

后端 未结 2 546
野的像风
野的像风 2021-02-05 11:18

We have some data which represents many model runs under different scenarios. For a single scenario, we\'d like to display the smoothed mean, with the filled areas representing

相关标签:
2条回答
  • 2021-02-05 11:34

    The accepted answer just works if measurements are aligned/discretized on x. In case of continuous data you could use a rolling window and add a custom ribbon

    iris %>%
        ## apply same grouping as for plot
        group_by(Species) %>%
        ## Important sort along x!
        arrange(Petal.Length) %>%
        ## calculate rolling mean and sd
        mutate(rolling_sd=rollapply(Petal.Width, width=10, sd,  fill=NA), rolling_mean=rollmean(Petal.Width, k=10, fill=NA)) %>%  # table_browser()
        ## build the plot
        ggplot(aes(Petal.Length, Petal.Width, color = Species)) +
        # optionally we could rather plot the rolling mean instead of the geom_smooth loess fit
        # geom_line(aes(y=rolling_mean), color="black") +
        geom_ribbon(aes(ymin=rolling_mean-rolling_sd/2, ymax=rolling_mean+rolling_sd/2), fill="lightgray", color="lightgray", alpha=.8) +
        geom_point(size = 1, alpha = .7) +
        geom_smooth(se=FALSE)
    

    0 讨论(0)
  • 2021-02-05 11:36

    hi i'm not sure if I correctly understand what you want, but for example,

    d <- data.frame(Time=rep(1:20, 4), 
                    Value=rnorm(80, rep(1:20, 4)+rep(1:4*2, each=20)),
                    Run=gl(4,20))
    
    mean_se <- function(x, mult = 1) {  
      x <- na.omit(x)
      se <- mult * sqrt(var(x) / length(x))
      mean <- mean(x)
      data.frame(y = mean, ymin = mean - se, ymax = mean + se)
    }
    
    ggplot( d, aes(x=Time,y=Value) ) + geom_line( aes(group=Run) ) + 
      geom_smooth(se=FALSE) + 
      stat_summary(fun.data=mean_se, geom="ribbon", alpha=0.25)
    

    note that mean_se is going to appear in the next version of ggplot2.

    0 讨论(0)
提交回复
热议问题