In this case, you probably want to define a simple function to perform the calculation and get localResult
.
def getLocalResult(args):
""" Do whatever you want in this func.
The point is that it takes x,i,j and
returns localResult
"""
x,i,j = args #unpack args
return doSomething(x,i,j)
Now in your computation function, you just create a pool of workers and map the local results:
import multiprocessing
def computation(np=4):
""" np is number of processes to fork """
p = multiprocessing.Pool(np)
output = p.map(getLocalResults, [(x,i,j) for x in range(i,j)] )
return output
I've removed the global here because it's unnecessary (globals are usually unnecessary). In your calling routine you should just do output.extend(computation(np=4))
or something similar.
EDIT
Here's a "working" example of your code:
from multiprocessing import Pool
def computation(args):
length, startPosition, npoints = args
print(args)
length = 100
np=4
p = Pool(processes=np)
p.map(computation, [(startPosition,startPosition+length//np, length//np) for startPosition in range(0, length, length//np)])
Note that what you had didn't work because you were using an instance method as your function. multiprocessing starts new processes and sends the information between processes via pickle
, therefore, only objects which can be pickled can be used. Note that it really doesn't make sense to use an instance method anyway. Each process is a copy of the parent, so any changes to state which happen in the processes do not propagate back to the parent anyway.