Requirement: Algorithm to generate all possible combinations of a set , without duplicates , or recursively calling function to return results.
The majority , if not
Here could be another solution, inspired from the Steinhaus-Johnson-Trotter algorithm:
function p(input) {
var i, j, k, temp, base, current, outputs = [[input[0]]];
for (i = 1; i < input.length; i++) {
current = [];
for (j = 0; j < outputs.length; j++) {
base = outputs[j];
for (k = 0; k <= base.length; k++) {
temp = base.slice();
temp.splice(k, 0, input[i]);
current.push(temp);
}
}
outputs = current;
}
return outputs;
}
// call
var outputs = p(["a", "b", "c", "d"]);
for (var i = 0; i < outputs.length; i++) {
document.write(JSON.stringify(outputs[i]) + "<br />");
}
Here's a snippet for an approach that I came up with on my own, but naturally was also able to find it described elsewhere:
generatePermutations = function(arr) {
if (arr.length < 2) {
return arr.slice();
}
var factorial = [1];
for (var i = 1; i <= arr.length; i++) {
factorial.push(factorial[factorial.length - 1] * i);
}
var allPerms = [];
for (var permNumber = 0; permNumber < factorial[factorial.length - 1]; permNumber++) {
var unused = arr.slice();
var nextPerm = [];
while (unused.length) {
var nextIndex = Math.floor((permNumber % factorial[unused.length]) / factorial[unused.length - 1]);
nextPerm.push(unused[nextIndex]);
unused.splice(nextIndex, 1);
}
allPerms.push(nextPerm);
}
return allPerms;
};
Enter comma-separated string (e.g. a,b,c):
<br/>
<input id="arrInput" type="text" />
<br/>
<button onclick="perms.innerHTML = generatePermutations(arrInput.value.split(',')).join('<br/>')">
Generate permutations
</button>
<br/>
<div id="perms"></div>
Explanation
Since there are factorial(arr.length)
permutations for a given array arr
, each number between 0
and factorial(arr.length)-1
encodes a particular permutation. To unencode a permutation number, repeatedly remove elements from arr
until there are no elements left. The exact index of which element to remove is given by the formula (permNumber % factorial(arr.length)) / factorial(arr.length-1)
. Other formulas could be used to determine the index to remove, as long as it preserves the one-to-one mapping between number and permutation.
Example
The following is how all permutations would be generated for the array (a,b,c,d)
:
# Perm 1st El 2nd El 3rd El 4th El
0 abcd (a,b,c,d)[0] (b,c,d)[0] (c,d)[0] (d)[0]
1 abdc (a,b,c,d)[0] (b,c,d)[0] (c,d)[1] (c)[0]
2 acbd (a,b,c,d)[0] (b,c,d)[1] (b,d)[0] (d)[0]
3 acdb (a,b,c,d)[0] (b,c,d)[1] (b,d)[1] (b)[0]
4 adbc (a,b,c,d)[0] (b,c,d)[2] (b,c)[0] (c)[0]
5 adcb (a,b,c,d)[0] (b,c,d)[2] (b,c)[1] (b)[0]
6 bacd (a,b,c,d)[1] (a,c,d)[0] (c,d)[0] (d)[0]
7 badc (a,b,c,d)[1] (a,c,d)[0] (c,d)[1] (c)[0]
8 bcad (a,b,c,d)[1] (a,c,d)[1] (a,d)[0] (d)[0]
9 bcda (a,b,c,d)[1] (a,c,d)[1] (a,d)[1] (a)[0]
10 bdac (a,b,c,d)[1] (a,c,d)[2] (a,c)[0] (c)[0]
11 bdca (a,b,c,d)[1] (a,c,d)[2] (a,c)[1] (a)[0]
12 cabd (a,b,c,d)[2] (a,b,d)[0] (b,d)[0] (d)[0]
13 cadb (a,b,c,d)[2] (a,b,d)[0] (b,d)[1] (b)[0]
14 cbad (a,b,c,d)[2] (a,b,d)[1] (a,d)[0] (d)[0]
15 cbda (a,b,c,d)[2] (a,b,d)[1] (a,d)[1] (a)[0]
16 cdab (a,b,c,d)[2] (a,b,d)[2] (a,b)[0] (b)[0]
17 cdba (a,b,c,d)[2] (a,b,d)[2] (a,b)[1] (a)[0]
18 dabc (a,b,c,d)[3] (a,b,c)[0] (b,c)[0] (c)[0]
19 dacb (a,b,c,d)[3] (a,b,c)[0] (b,c)[1] (b)[0]
20 dbac (a,b,c,d)[3] (a,b,c)[1] (a,c)[0] (c)[0]
21 dbca (a,b,c,d)[3] (a,b,c)[1] (a,c)[1] (a)[0]
22 dcab (a,b,c,d)[3] (a,b,c)[2] (a,b)[0] (b)[0]
23 dcba (a,b,c,d)[3] (a,b,c)[2] (a,b)[1] (a)[0]
Note that each permutation # is of the form:
(firstElIndex * 3!) + (secondElIndex * 2!) + (thirdElIndex * 1!) + (fourthElIndex * 0!)
which is basically the reverse process of the formula given in the explanation.
Here is an answer from @le_m. It might be of help.
The following very efficient algorithm uses Heap's method to generate all permutations of N elements with runtime complexity in O(N!):
function permute(permutation) {
var length = permutation.length,
result = [permutation.slice()],
c = new Array(length).fill(0),
i = 1, k, p;
while (i < length) {
if (c[i] < i) {
k = i % 2 && c[i];
p = permutation[i];
permutation[i] = permutation[k];
permutation[k] = p;
++c[i];
i = 1;
result.push(permutation.slice());
} else {
c[i] = 0;
++i;
}
}
return result;
}
console.log(JSON.stringify(permute([1, 2, 3, 4])));
A fairly simple C++ code without recursion.
#include <vector>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>
// Integer data
void print_all_permutations(std::vector<int> &data) {
std::stable_sort(std::begin(data), std::end(data));
do {
std::copy(data.begin(), data.end(), std::ostream_iterator<int>(std::cout, " ")), std::cout << '\n';
} while (std::next_permutation(std::begin(data), std::end(data)));
}
// Character data (string)
void print_all_permutations(std::string &data) {
std::stable_sort(std::begin(data), std::end(data));
do {
std::copy(data.begin(), data.end(), std::ostream_iterator<char>(std::cout, " ")), std::cout << '\n';
} while (std::next_permutation(std::begin(data), std::end(data)));
}
int main()
{
std::vector<int> v({1,2,3,4});
print_all_permutations(v);
std::string s("abcd");
print_all_permutations(s);
return 0;
}
We can find next permutation of a sequence in linear time.
Here is a simple solution to compute the nth permutation of a string:
function string_nth_permutation(str, n) {
var len = str.length, i, f, res;
for (f = i = 1; i <= len; i++)
f *= i;
if (n >= 0 && n < f) {
for (res = ""; len > 0; len--) {
f /= len;
i = Math.floor(n / f);
n %= f;
res += str.charAt(i);
str = str.substring(0, i) + str.substring(i + 1);
}
}
return res;
}
The algorithm follows these simple steps:
f = len!
, there are factorial(len)
total permutations of a set of len
different elements. (len-1)!
and chose the element at the resulting offset. There are (len-1)!
different permutations that have any given element as their first element.This algorithm is very simple and has interesting properties:
0
is the set in the order given.factorial(a.length)-1
is the last one: the set a
in reverse order.It can easily be converted to handle a set stored as an array:
function array_nth_permutation(a, n) {
var b = a.slice(); // copy of the set
var len = a.length; // length of the set
var res; // return value, undefined
var i, f;
// compute f = factorial(len)
for (f = i = 1; i <= len; i++)
f *= i;
// if the permutation number is within range
if (n >= 0 && n < f) {
// start with the empty set, loop for len elements
for (res = []; len > 0; len--) {
// determine the next element:
// there are f/len subsets for each possible element,
f /= len;
// a simple division gives the leading element index
i = Math.floor(n / f);
// alternately: i = (n - n % f) / f;
res.push(b.splice(i, 1)[0]);
// reduce n for the remaining subset:
// compute the remainder of the above division
n %= f;
// extract the i-th element from b and push it at the end of res
}
}
// return the permutated set or undefined if n is out of range
return res;
}
clarification:
f
is first computed as factorial(len)
.f
is divided by len
, giving exacty the previous factorial.n
divided by this new value of f
gives the slot number among the len
slots that have the same initial element. Javascript does not have integral division, we could use (n / f) ... 0)
to convert the result of the division to its integral part but it introduces a limitation to sets of 12 elements. Math.floor(n / f)
allows for sets of up to 18 elements. We could also use (n - n % f) / f
, probably more efficient too.n
must be reduced to the permutation number within this slot, that is the remainder of the division n / f
.We could use i
differently in the second loop, storing the division remainder, avoiding Math.floor()
and the extra %
operator. Here is an alternative for this loop that may be even less readable:
// start with the empty set, loop for len elements
for (res = []; len > 0; len--) {
i = n % (f /= len);
res.push(b.splice((n - i) / f, 1)[0]);
n = i;
}
I dare to add another answer, aiming at answering you question regarding slice
, concat
, reverse
.
The answer is it is possible (almost), but it would not be quite effective. What you are doing in your algorithm is the following:
i
and j
where i
< j
and perm[i]
> perm[j]
, indices given left-to-right)This is mainly, what my first answer does, but in a bit more optimal manner.
Example
Consider the permutation 9,10, 11, 8, 7, 6, 5, 4 ,3,2,1 The first inversion right-to-left is 10, 11. And really the next permutation is: 9,11,1,2,3,4,5,6,7,8,9,10=9concat(11)concat(rev(8,7,6,5,4,3,2,1))concat(10)
Source code Here I include the source code as I envision it:
var nextPermutation = function(arr) {
for (var i = arr.length - 2; i >= 0; i--) {
if (arr[i] < arr[i + 1]) {
return arr.slice(0, i).concat([arr[i + 1]]).concat(arr.slice(i + 2).reverse()).concat([arr[i]]);
}
}
// return again the first permutation if calling next permutation on last.
return arr.reverse();
}
console.log(nextPermutation([9, 10, 11, 8, 7, 6, 5, 4, 3, 2, 1]));
console.log(nextPermutation([6, 5, 4, 3, 2, 1]));
console.log(nextPermutation([1, 2, 3, 4, 5, 6]));
The code is avaiable for jsfiddle here.