I\'m working with MATLAB for few days and I\'m having difficulties to import a CSV-file to a matrix.
My problem is that my CSV-file contains almost only Strings and
I recommend looking at the dataset array.
The dataset array is a data type that ships with Statistics Toolbox. It is specifically designed to store hetrogeneous data in a single container.
The Statistics Toolbox demo page contains a couple vidoes that show some of the dataset array features. The first is titled "An Introduction to Dataset Arrays". The second is titled "An Introduction to Joins".
http://www.mathworks.com/products/statistics/demos.html
For the case when you know how many columns of data there will be in your CSV file, one simple call to textscan like Amro suggests will be your best solution.
However, if you don't know a priori how many columns are in your file, you can use a more general approach like I did in the following function. I first used the function fgetl to read each line of the file into a cell array. Then I used the function textscan to parse each line into separate strings using a predefined field delimiter and treating the integer fields as strings for now (they can be converted to numeric values later). Here is the resulting code, placed in a function read_mixed_csv
:
function lineArray = read_mixed_csv(fileName, delimiter)
fid = fopen(fileName, 'r'); % Open the file
lineArray = cell(100, 1); % Preallocate a cell array (ideally slightly
% larger than is needed)
lineIndex = 1; % Index of cell to place the next line in
nextLine = fgetl(fid); % Read the first line from the file
while ~isequal(nextLine, -1) % Loop while not at the end of the file
lineArray{lineIndex} = nextLine; % Add the line to the cell array
lineIndex = lineIndex+1; % Increment the line index
nextLine = fgetl(fid); % Read the next line from the file
end
fclose(fid); % Close the file
lineArray = lineArray(1:lineIndex-1); % Remove empty cells, if needed
for iLine = 1:lineIndex-1 % Loop over lines
lineData = textscan(lineArray{iLine}, '%s', ... % Read strings
'Delimiter', delimiter);
lineData = lineData{1}; % Remove cell encapsulation
if strcmp(lineArray{iLine}(end), delimiter) % Account for when the line
lineData{end+1} = ''; % ends with a delimiter
end
lineArray(iLine, 1:numel(lineData)) = lineData; % Overwrite line data
end
end
Running this function on the sample file content from the question gives this result:
>> data = read_mixed_csv('myfile.csv', ';')
data =
Columns 1 through 7
'04' 'abc' 'def' 'ghj' 'klm' '' ''
'' '' '' '' '' 'Test' 'text'
'' '' '' '' '' 'asdfhsdf' 'dsafdsag'
Columns 8 through 10
'' '' ''
'0xFF' '' ''
'0x0F0F' '' ''
The result is a 3-by-10 cell array with one field per cell where missing fields are represented by the empty string ''
. Now you can access each cell or a combination of cells to format them as you like. For example, if you wanted to change the fields in the first column from strings to integer values, you could use the function str2double as follows:
>> data(:, 1) = cellfun(@(s) {str2double(s)}, data(:, 1))
data =
Columns 1 through 7
[ 4] 'abc' 'def' 'ghj' 'klm' '' ''
[NaN] '' '' '' '' 'Test' 'text'
[NaN] '' '' '' '' 'asdfhsdf' 'dsafdsag'
Columns 8 through 10
'' '' ''
'0xFF' '' ''
'0x0F0F' '' ''
Note that the empty fields results in NaN values.
Given the sample you posted, this simple code should do the job:
fid = fopen('file.csv','r');
C = textscan(fid, repmat('%s',1,10), 'delimiter',';', 'CollectOutput',true);
C = C{1};
fclose(fid);
Then you could format the columns according to their type. For example if the first column is all integers, we can format it as such:
C(:,1) = num2cell( str2double(C(:,1)) )
Similarly, if you wish to convert the 8th column from hex to decimals, you can use HEX2DEC:
C(:,8) = cellfun(@hex2dec, strrep(C(:,8),'0x',''), 'UniformOutput',false);
The resulting cell array looks as follows:
C =
[ 4] 'abc' 'def' 'ghj' 'klm' '' '' [] '' ''
[NaN] '' '' '' '' 'Test' 'text' [ 255] '' ''
[NaN] '' '' '' '' 'asdfhsdf' 'dsafdsag' [3855] '' ''
In R2013b or later you can use a table:
>> table = readtable('myfile.txt','Delimiter',';','ReadVariableNames',false)
>> table =
Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10
____ _____ _____ _____ _____ __________ __________ ________ ____ _____
4 'abc' 'def' 'ghj' 'klm' '' '' '' NaN NaN
NaN '' '' '' '' 'Test' 'text' '0xFF' NaN NaN
NaN '' '' '' '' 'asdfhsdf' 'dsafdsag' '0x0F0F' NaN NaN
Here is more info.
If your input file has a fixed amount of columns separated by commas and you know in which columns are the strings it might be best to use the function
textscan()
Note that you can specify a format where you read up to a maximum number of characters in the string or until a delimiter (comma) is found.
% Assuming that the dataset is ";"-delimited and each line ends with ";"
fid = fopen('sampledata.csv');
tline = fgetl(fid);
u=sprintf('%c',tline); c=length(u);
id=findstr(u,';'); n=length(id);
data=cell(1,n);
for I=1:n
if I==1
data{1,I}=u(1:id(I)-1);
else
data{1,I}=u(id(I-1)+1:id(I)-1);
end
end
ct=1;
while ischar(tline)
ct=ct+1;
tline = fgetl(fid);
u=sprintf('%c',tline);
id=findstr(u,';');
if~isempty(id)
for I=1:n
if I==1
data{ct,I}=u(1:id(I)-1);
else
data{ct,I}=u(id(I-1)+1:id(I)-1);
end
end
end
end
fclose(fid);